Какая архитектура процессора лучше – Мир ПК

Архитектура процессора — статья из Википедии — свободной энциклопедии

RISC

Reduced Instruction Set Computer — Архитектура с уменьшенным временем выполнения инструкций (из расшифровка RISC можно подумать, что это уменьшенное количество инструкций, но это не так). Данное направления развилось в итоге после того, как оказалось, что большинство компиляторов того времени не использовали все инструкции и разработчики процессоров решили получить больше производительности использую Конвейеры. В целом RISC является золотой серединой между всеми архитектурами.

Яркие примеры данной архитектуры: ARM, MIPS, OpenRISC, RISC-V

Но сначала разберемся с диодом

Вдыхаем!

Кремний (он же Si – “silicium” в таблице Менделеева) относится к категории полупроводников, а значит он, с одной стороны, пропускает ток лучше диэлектрика, с другой, – делает это хуже, чем металл.

Хочется нам того или нет, но для понимания работы и дальнейшей история развития процессоров придется окунуться в строение одного атома кремния. Не бойтесь, сделаем это кратко и очень понятно.

Задача транзистора заключается в усилении слабого сигнала за счет дополнительного источника питания.

У атома кремния есть четыре электрона, благодаря которым он образует связи (а если быть точным – ковалентные связи) с такими же близлежащими тремя атомами, формируя кристаллическую решетку. Пока большинство электронов находятся в связи, незначительная их часть способна двигаться через кристаллическую решетку. Именно из-за такого частичного перехода электронов кремний отнесли к полупроводникам.

Но столь слабое движение электронов не позволило бы использовать транзистор на практике, поэтому ученые решили повысить производительность транзисторов за счет легирования, а проще говоря – дополнения кристаллической решетки кремния атомами элементов с характерным размещением электронов.

Так стали использовать 5-валентную примесь фосфора, за счет чего получили транзисторы n-типа. Наличие дополнительного электрона позволило ускорить их движение, повысив пропуск тока.

При легировании транзисторов p-типа таким катализатором стал бор, в который входят три электрона. Из-за отсутствия одного электрона, в кристаллической решетке возникают дырки (выполняют роль положительного заряда), но за счет того, что электроны способны заполнять эти дырки, проводимость кремния повышается в разы.

Предположим, мы взяли кремниевую пластину и легировали одну ее часть при помощи примеси p-типа, а другую – при помощи n-типа. Так мы получили диод – базовый элемент транзистора.

Теперь электроны, находящиеся в n-части, будут стремится перейти в дырки, расположенные в p-части. При этом n-сторона будет иметь незначительный отрицательный, а p-сторона – положительный заряды. Образованное в результате этого «тяготения» электрическое поле –барьер, будет препятствовать дальнейшему перемещению электронов.

Если к диоду подключить источник питания таким образом, чтобы “–” касался p-стороны пластины, а “+” – n-стороны, протекание тока будет невозможно из-за того, что дырки притянутся в минусовому контакту источника питания, а электроны – к плюсовому, и связь между электронами p и n стороны будет утеряна за счет расширения объединенного слоя.

Но если подключить питание с достаточным напряжением наоборот, т.е. “+” от источника к p-стороне, а “–” – к n-стороне, размещенные на n-стороне электроны будут отталкиваться отрицательным полюсом и выталкиваться на p-сторону, занимая дырки в p-области.

Но теперь электроны притягивает к положительному полюсу источника питания и они продолжаются перемещаться по p-дыркам. Это явление назвали прямым смещением диода.

Несколько общих рекомендаций

  • Процессор стоит выбирать в зависимости от поставленных задач. Если в обычном режиме у вас работает около двух ресурсоёмких программ, то лучше купить двухъядерный «камень» с высокой частотой. Если же используется больше потоков – лучше остановить свой выбор на многоядернике той же архитектуры, пусть даже с меньшей частотой.
  • Гибридные процессоры (с встроенной видеокартой) позволят сэкономить на покупке видеокарты, при условии, что играть в навороченные игры вам не надо. Это почти все современные процессоры Intel и AMD серии A4-A12, но у AMD графическое ядро сильнее.
  • Вместе со всеми процессорами с пометкой «ВОХ» должен поставляться кулер (конечно, простенькая модель, которой не хватит для высоких нагрузок, но для работы в номинальном режиме — то что надо). Если нужен крутой кулер, то вам сюда.
  • На процессоры с пометкой «ОЕМ» распространяется годовая гарантия, на ВОХ – трехлетняя. Если срок гарантии, предоставляемой магазином меньше – лучше задуматься над тем, чтобы поискать другого распространителя.
  • В некоторых случаях есть смысл купить проц с рук, таким образом можно сэкономить около 30% суммы. Правда, такой способ покупки связан с определенным риском, поэтому необходимо обращать внимание на наличие гарантии и репутацию продавца.

Параметры процессора

  • Количество ядер – отвечают за возможность устройство выполнять одновременно множество операций. В настоящее время даже бюджетные решения, обладают 2 ядрами, что позволить не только сёрфить интернет, работать в офисных программах, но и запускать нетребовательные игры.
  • Частота такта – имеет единицу измерения гигагерц, от неё напрямую зависит скорость загрузки процессора. Чем больше частота, тем быстрее идёт выполнение поставленных задач.
  • Частота шины – отвечает за скорость обмена данными.
  • Разрядность – можно сказать, что это архитектура центрального процессора. Возможны две вариации – 32-bit и 64-bit.

Разрядность процессора

Кэш-память – непосредственно внутренняя память центрального процессора. В ней хранится временная информация и измеряется в мегабайтах.Сокет – разъём в материнской плате для установки центрально процессора.

Сокет

Техпроцесс – показывает величину транзисторов и измеряется в нанометрах.Графическое ядро – в настоящее время процессор может выполнять функцию видеокарты. Но стоит отметить, что для работы с ресурсоёмкими приложениями и тяжёлыми играми, стоит обзавестись внешней видеокартой.Кулер – выполняет функцию охлаждения, состоит из вентилятора и радиатора.

Кулер

Полезно знать — Как узнать оперативную память на компьютере?

Разбор обозначений

В теме о процессорах вы можете столкнуться с их цифровыми обозначениями типа x64, x86 и пр. Давайте разберемся, что все это значит. Разложу по полочкам.

8086 и компания

В 1978 году компания Intel выпустила 16-битный процессор, получивший название 8086.

arhitektura-protsessora_4.jpg

arhitektura-protsessora_5.jpg

После него выходили другие модели, в наименованиях которых первые две цифры оставались прежними, а последние менялись на 88, 186, 286, 386, 486 и прочие.

Вот пример i386.

Как вы заметили, почти все имена заканчиваются одинаково, поэтому все семейство объединили под условное обозначение x86. Оно устоялось среди пользователей и применялось даже когда Интел начала давать своим продуктам словарные названия типа Пентиум, Кор, Атом и т. д. Переняли эту «моду» и другие производители устройств, совместимых с этим семейством, — IBM, VIA, AMD, Cyrix и др.

Чаще всего это обозначение сейчас используется по отношению к 32-битным процессорам. Они также могут называться, к примеру, i386, i486, i586, когда требуется дать более точные сведения о наборе инструкций.

Совершенствование до 64 бит

Компания Intel модернизировала процессоры с 16-битной шиной до 32 бит. Однако AMD приложила усилия к усовершенствованию их до х64. Первый такой продукт она выпустила в 2003 году, не став заморачиваться над названием — просто «AMD64».

arhitektura-protsessora_6.jpg

Чтобы показать повышенную разрядность процессоров, стали к обозначению «x86» добавлять «64», к примеру, x86_64.

Интел решила выделиться, помечая такие устройства сначала как «IA-32e», а потом «EM64T». Но сейчас чаще можно встретить «Intel 64».

Характеристики

Рассмотрим некоторые характеристики процессора:

Тактовая частота

Упрощенно, тактовая частота — это количество операций, которые процессор способен выполнить за секунду. Чем выше этот показатель, тем более производительным будет процессор. Однако производительность зависит и от ряда других параметров, в том числе от архитектуры и объема кэша первого, второго и третьего уровней. По этому параметру можно разделить все процессоры на несколько групп:

До 3 ГГц

Бюджетные процессоры, предназначенные для работы с офисными программами и решения прочих несложных задач.

Перейти в каталог

Более 4 ГГц

CPU, созданные для решения сложных задач и позволяющие запускать ресурсоемкие игры и профессиональные программы.

Перейти в каталог

Сегодня в продаже представлены процессоры, производительность которых можно наращивать. Это модели с открытым или разблокированным множителем. Процесс увеличения производительности называют разгоном или оверклокингом. В зависимости от конкретного ЦП, его можно выполнить через BIOS или в приложении, использующемся для регулировки настроек компьютера. При этом необходимо иметь в виду, что разгон увеличивает не только производительность, но и энергопотребление, а это может привести к перегреву.

Как узнать архитектуру?

В случае с новыми ЦП прочитать их характеристики можно в инструкции или непосредственно на коробке. Но что делать, если вы берете устройство с рук? Или может быть хотите знать, какая архитектура у вашего проца? Выяснить это можно несколькими способами.

Средства системы

Выполните следующие действия:

  • Откройте командную строку через меню «Пуск — Программы — Стандартные» или другим удобным способом.
  • Впишите в нее слово systeminfo.
  • Нажмите Enter.

Перед вами появятся сведения об операционке, среди которой будет и архитектура процессора.

arhitektura-protsessora_7.jpg

Другой способ:

  • Щелкните правой кнопкой мыши на значке «Мой компьютер»;
  • Откройте «Свойства»;
  • Перейдите в «Диспетчер устройств»;
  • Кликните пункт «Процессор».

И тоже получите все данные о нем.

arhitektura-protsessora_8.jpg

Сторонние программы

Одной из хороших программ, помогающих узнать все о проце, является CPU-Z.

Она бесплатная и распространенная, поэтому вы без проблем ее отыщите и скачаете.

Вам нужно лишь установить и запустить ее, чтобы посмотреть необходимую информацию.

В качестве альтернативного варианта могу предложить еще одну достойную прогу — AIDA 64. Она платная (Есть триал период), зато может рассказать все о вашем железе в целом, не только о ЦП. Кстати, если вы не захотите платить, можете воспользоваться демо-версией.

Получить сведения о процессоре через нее можно, перейдя по разделам «Компьютер — Системная плата — ЦП».

Критерии и варианты выбора:

Согласно изложенным выше критериям, ЦПУ из каталога DNS можно распределить следующим образом:

Будущие перспективы

В ближайшие 10-20 лет, скорее всего, изменится материальная часть процессоров ввиду того, что технологический процесс достигнет физических пределов производства. Возможно, это будут:

  1. Квантовые компьютеры
  2. Молекулярные компьютеры

Квантовые процессоры

Процессоры, работа которых всецело базируется на квантовых эффектах. В настоящее время ведутся работы над созданием рабочих версий квантовых процессоров.

Визуальный осмотр процессора

Самый надежный метод, который не зависит от программных и аппаратных неполадок — посмотреть на процессор своими глазами. Все современные процессоры маркируются производителями, поэтому стерев небольшой слой термопасты, можно увидеть модель стоящего в гнезде процессора.

Теги компьютеры процессоры

Расширение существующих архитектур

Достаточно популярной техникой является добавление в уже существующую архитектуру больше инструкций через расширения. Ярким примером является SSE под x86. Этим же грешит ARM и MIPS и практически все. Почему? Потому что нельзя создать унивирсальную архитектуру.

Другим вариантом является использование других архитектур для уменьшения размера инструкций.
Яркий пример: ARM со своим Thumb, MIPS с MIPS16.

В видеокартах часто встречается много ядер и из-за этой особенности появилась потребность в дополнительных решениях. Если конвейеры можно встретить даже в микроконтроллерах то решения используемых в GPU встречаются редко. Например Masked Execution (Встречается в инструкциях ARM, но не в Thumb-I/II). Еще есть другие особенность: это уклон в сторону Floating Number (Числа с плавающей запятой), Уменьшение производительности в противовес большего количества ядер и т.д.

До 80$

Здесь возможностей несколько больше, поскольку за эту сумму можно купить неплохой четырёхядерник. Сюда же можно отнести начальные комплекты материнская плата+встроенный процессор. Их предназначением является обеспечение стабильной работы стационарных компьютеров малой и средней мощности. Обычно их хватает на комфортную работу в интернете, но для серьезной нагрузки такой комплект не годится.

Для работы в номинальном режиме лучше всего выбрать процессор AMD Athlon X4 под платформу AMD AM4. Если нужна встроенная графика, то берите любой понравившийся по цене из серии AMD A8, либо же микропроцессор Intel Pentium Dual-Core G4600 для платформы Intel LGA1151.

Неплохую производительность при работе в режиме разгона показывают процессоры серии AMD FX, или Athlon X4 xxxK, т.е. с буквой «К». В этих моделях разблокирован множитель, а значит они легко поддаются разгону. Но, покупая его, нужно учесть, что не любая материнская плата подойдёт для разгона. Можно использовать с видеокартой уровня NVidia GTX1050Ti.

Архитектуры процессора Intel

Сразу говорю, что вам не стоит ждать от статьи технических подробностей, мы рассмотрим только базовые отличия, которые будут интересны обычным пользователям.

Первые процессоры

Сначала кратко окунемся в историю чтобы понять с чего все началось. Не будем углубятся далеко и начнем с 32-битных процессоров. Первым был Intel 80386, он появился в 1986 году и мог работать на частоте до 40 МГц. Старые процессоры имели тоже отсчет поколений. Этот процессор относиться к третьему поколению, и тут использовался техпроцесс 1500 нм.

Следующим, четвертым поколением был 80486. Используемая в нем архитектура так и называлась 486. Процессор работал на частоте 50 МГц и мог выполнять 40 миллионов команд в секунду. Процессор имел 8 кб кэша первого уровня, а для изготовления использовался техпроцесс 1000 нм.

Следующей архитектурой была P5 или Pentium. Эти процессоры появились в 1993 году, здесь был увеличен кэш до 32 кб, частота до 60 МГц, а техпроцесс уменьшен до 800 нм. В шестом поколении P6 размер кэша составлял 32 кб, а частота достигла 450 МГц. Тех процесс был уменьшен до 180 нм.

Дальше компания начала выпускать процессоры на архитектуре NetBurst. Здесь использовалось 16 кб кэша первого уровня на каждое ядро, и до 2 Мб кэша второго уровня. Частота выросла до 3 ГГц, а техпроцесс остался на том же уровне — 180 нм. Уже здесь появились 64 битные процессоры, которые поддерживали адресацию большего количества памяти. Также было внесено множество расширений команд, а также добавлена технология Hyper-Threading, которая позволяла создавать два потока из одного ядра, что повышало производительность.

Естественно, каждая архитектура улучшалась со временем, увеличивалась частота и уменьшался техпроцесс. Также существовали и промежуточные архитектуры, но здесь все было немного упрощено, поскольку это не является нашей основной темой.

Intel Core

На смену NetBurst в 2006 году пришла архитектура Intel Core. Одной из причин разработки этой архитектуры была невозможность увеличения частоты в NetBrust, а также ее очень большое тепловыделение. Эта архитектура была рассчитана на разработку многоядерных процессоров, размер кэша первого уровня был увеличен до 64 Кб. Частота осталась на уровне 3 ГГц, но зато была сильно снижена потребляемая мощность, а также техпроцесс, до 60 нм.

Процессоры на архитектуре Core поддерживали аппаратную виртуализацию Intel-VT, а также некоторые расширения команд, но не поддерживали Hyper-Threading, поскольку были разработаны на основе архитектуры P6, где такой возможности еще не было.

Первое поколение — Nehalem

arhitektura-protsessora_17.jpg

Дальше нумерация поколений была начата сначала, потому что все следующие архитектуры — это улучшенные версии Intel Core. Архитектура Nehalem пришла на смену Core, у которой были некоторые ограничения, такие как невозможность увеличить тактовую частоту. Она появилась в 2007 году. Здесь используется 45 нм тех процесс и была добавлена поддержка технологии Hyper-Therading.

Процессоры Nehalem имеют размер L1 кэша 64 Кб, 4 Мб L2 кэша и 12 Мб кєша L3. Кэш доступен для всех ядер процессора. Также появилась возможность встраивать графический ускоритель в процессор. Частота не изменилась, зато выросла производительность и размер печатной платы.

Второе поколение — Sandy Bridge

arhitektura-protsessora_18.jpg

Sandy Bridge появилась в 2011 году для замены Nehalem. Здесь уже используется техпроцесс 32 нм, здесь используется столько же кэша первого уровня, 256 Мб кэша второго уровня и 8 Мб кэша третьего уровня. В экспериментальных моделях использовалось до 15 Мб общего кэша.

Также теперь все устройства выпускаются со встроенным графическим ускорителем. Была увеличена максимальная частота, а также общая производительность.

Третье поколение — Ivy Bridge

arhitektura-protsessora_19.jpg

Процессоры Ivy Bridge работают быстрее чем Sandy Bridge, а для их изготовления используется техпроцесс 22 нм. Они потребляют на 50% меньше энергии чем предыдущие модели, а также дают на 25-60% высшую производительность. Также процессоры поддерживают технологию Intel Quick Sync, которая позволяет кодировать видео в несколько раз быстрее.

Четвертое поколение — Haswell

arhitektura-protsessora_20.jpg

Поколение процессора Intel Haswell было разработано в 2012 году. Здесь использовался тот же техпроцесс — 22 нм, изменен дизайн кэша, улучшены механизмы энергопотребления и немного производительность. Но зато процессор поддерживает множество новых разъемов: LGA 1150, BGA 1364, LGA 2011-3, технологии DDR4 и так далее. Основное преимущество Haswell в том, что она может использоваться в портативных устройствах из-за очень низкого энергопотребления.

Пятое поколение — Broadwell

arhitektura-protsessora_21.png

Это улучшенная версия архитектуры Haswell, которая использует техпроцесс 14 нм. Кроме того, в архитектуру было внесено несколько улучшений, которые позволили повысить производительность в среднем на 5%.

Шестое поколение — Skylake

arhitektura-protsessora_22.jpg

Следующая архитектура процессоров intel core — шестое поколение Skylake вышла в 2015 году. Это одно из самых значительных обновлений архитектуры Core. Для установки процессора на материнскую плату используется сокет LGA 1151, теперь поддерживается память DDR4, но сохранилась поддержка DDR3. Поддерживается Thunderbolt 3.0, а также шина DMI 3.0, которая дает в два раза большую скорость. И уже по традиции была увеличенная производительность, а также снижено энергопотребление.

Седьмое поколение — Kaby Lake

Новое, седьмое поколение Core — Kaby Lake вышло в этом году, первые процессоры появились в середине января. Здесь было не так много изменений. Сохранен техпроцесс 14 нм, а также тот же сокет LGA 1151. Поддерживаются планки памяти DDR3L SDRAM и DDR4 SDRAM, шины PCI Express 3.0, USB 3.1. Кроме того, была немного увеличена частота, а также уменьшена плотность расположения транзисторов. Максимальная частота 4,2 ГГц.

Другие национальные проекты

Китай

  • Loongson

Exception (исключения)

Но кроме прерываний еще существуют исключений которые возникают например при деления на ноль. Зачастую его совмещают с прерываниями и системными вызовами, как например в MIPS. Исключения не всегда присутствуют в процессоре например как в AVR или младших PIC

Системные вызовы

Системные вызовы используется в Операционных системах для того, чтобы программы могли общаться с операционной системой например просить ОС прочитать файл. Очень похоже на прерывания. Аналогично исключениям не всегда присутствуют в процессоре

Здесь описываются методы запрета доступа приложений к аппаратуре напрямую.

11. Упаковка и кулер

Процессоры, в конце маркировки которых присутствует слово «BOX», упакованы в коробку и могут продаваться в комплекте с кулером.

Процессор с кулером

Но некоторые более дорогие боксовые процессоры могут не иметь кулера в комплекте.

Боксовый процессор

Если в конце маркировки написано «Tray» или «ОЕМ» – это значит, что процессор поставляется в маленьком пластиковом лотке и кулера в комплекте нет.

Процессор без кулера

Процессоры начального класса типа Pentium проще и дешевле приобрести в комплекте с кулером. А вот процессор среднего или высокого класса часто выгоднее купить без кулера и отдельно подобрать для него подходящий кулер. По стоимости выйдет примерно столько же, а по охлаждению и уровню шума будет значительно лучше.

Привилегированный режим

Это режим в котором стартует процессор. В таком режиме программа или ОС имеют полный доступ к памяти в обход MMU/MPU. Все программы запускаются в непривилегированном режиме во избежания прямого доступа к аппаратным подсистемам программ для этого не предназначенных. Например вредоносным программам. В Windows ее часто называют Ring-0, а в *nix — системным. Не стоит путать Привелигированный пользователь и Привилегированный режим ибо в руте вы все еще не можете иметь прямой доступ к аппаратуре (можно загрузить системный модуль который позволит это сделать, но об этом чуть позже 🙂

MPU и MMU

MMU

MPU и MMU используется в современных системах чтобы изолировать несколько приложений. НО если MMU позволяет “передвинуть” память то MPU позволяет только блокировать доступ к памяти/запуск кода в памяти.

Маркировка процессора

Весьма важно уметь читать и правильно истолковывать маркировку процессора, ибо магазины бывают разные, продавцы – не всегда честные, а вот выложить лишние N-тысяч рублей за непонятный «камень» вряд ли кому-то хочется, а посему важно уметь читать маркировку процессора. Давайте разберем ее на конкретном примере, допустим, для производителя AMD.

В общем виде маркировку от AMD (для поколения Family 10h) можно представить в следующем виде (см. изображение):

какой процессор выбрать - скриншот 11 - маркировка ЦП AMD

Расшифровка будет следующей:

Марка процессора (1). Возможны следующие символы:

  • A – AMD Athlon;
  • H – AMD Phenom;
  • S – AMD Sempron;
  • O – AMD Optheron.

Назначение процессора (2). Варианты:

  • D – desktop – для рабочих станций или настольных ПК;
  • E – embedded server – для выделенных серверов;
  • S – server – для серверов.

Модель процессора (3). Возможны обозначения:

  • Е – энергоэффективные процессоры;
  • Х – заблокированный множитель;
  • Z – разблокированный множитель.

Тепловой пакет и класс системы охлаждения (4). Данные берутся из таблицы (см. изображение):

какой процессор выбрать - скриншот 12 - TDP в маркировке для AMD

Корпус процессора (5). Данные берутся из таблицы (см. изображение).

какой процессор выбрать - скриншот 13 - Маркировка AMD, тип корпуса

Количество ядер (6). Значения от 2 до С (12).

Объем кэш-памяти (7). Данные из таблицы (см. изображение).

какой процессор выбрать - скриншот 14 - маркировка AMD, объем кэш-памяти

Ревизия процессора или степпинг (8). Данные из таблицы (см. изображение).

какой процессор выбрать - скриншот 15 - маркировка AMD, ревизия ЦП

Итак, на основании данных таблицы можно легко определить, что перед нами за процессор, допустим, судя по модели ниже (см. изображение), перед нами..

какой процессор выбрать - скриншот 16 - процессор AMD, полная расшифровка маркировки

..процессор AMD с маркировкой HDZ560WFK2DGM, которая означает:

  • H CPU семейства AMD Phenom;
  • D – назначение: рабочие станции/настольные ПК;
  • Z560 – модельный номер процессора 560 (Z – со свободным множителем);
  • WF TDP до 95 Вт;
  • K – упакован процессор в корпус 938 pin OµPGA (Socket AM3);
  • 2 – общее количество активных ядер;
  • D – объем кэш-памяти L2 512 КБ и объем кэш-памяти L3 6144 КБ;
  • GM – ядро процессора степпинга C3.

Вот так, зная учетные данные таблиц, можно легко вычислить, что перед Вами за экземпляр.

Собственно, это все, что хотелось бы рассказать. Думаю, что информация окажется для Вас полезной и пригодится еще не один раз.

к содержанию ↑

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...