Как устроен жесткий диск компьютера (HDD) или винчестер

Он магнитный. Он электрический. Он фотонный. Нет, это не новое супергеройское трио из вселенной Marvel. Речь идёт о хранении наших драгоценных цифровых данных. Нам нужно где-то их хранить,…

Устройство жёсткого диска

Исходя из полного названия данного запоминающего устройства — накопитель на жёстких магнитных дисках (НЖМД) — можно без особых усилий понять, что лежит в основе его работы. Благодаря своей дешевизне и долговечности эти носители информации устанавливают в различные компьютеры: ПК, ноутбуки, серверы, планшеты и т.д. Отличительной чертой HDD является возможность хранить огромные объёмы данных, обладая при этом совсем небольшими габаритами. Ниже мы расскажем о его внутреннем устройстве, принципах работы и прочих особенностях. Приступим!

Гермоблок и плата электроники

Зелёная стеклоткань и дорожки из меди на ней, вместе с разъёмами для подключения блока питания и гнездом SATА называются платой управления (Printed Circuit Board, PCB). Данная интегральная схема служит для синхронизации работы диска с ПК и руководством всех процессов внутри HDD. Корпус из алюминия чёрного цвета и то, что внутри него, называется герметичным блоком (Head and Disk Assembly, HDA).

Интегральная схема жёсткого дискa

В центре интегральной схемы расположен чип большого размера — это микроконтроллер (Micro Controller Unit, MCU). В сегодняшних HDD микропроцессор содержит в себе два компонента: центральный вычислительный блок (Central Processor Unit, CPU), который занимается всеми расчётами, и канал чтения и записи — специальное устройство, переводящее аналоговый сигнал с головки в дискретный, когда она занята чтением и наоборот — цифровой в аналоговый во время записи. Микропроцессор обладает портами ввода/вывода, при помощи которых он управляет остальными элементами, расположенными на плате, и совершает обмен информацией через SATA-подключение.

Другой чип, расположенный на схеме, является DDR SDRAM памятью (memory chip). Её количество предопределяет объём кеша винчестера. Данный чип разделён на память прошивки, частично содержащуюся во флеш-накопителе, и буферную, необходимую процессору для того, чтобы загружать модули прошивки.

Третий чип называется контроллером управления двигателем и головками (Voice Coil Motor controller, VCM controller). Он управляет дополнительными источниками электропитания, которые расположены на плате. От них получают питание микропроцессор и предусилитель-коммутатор (preamplifier), содержащийся в герметичном блоке. Этот контроллер требует больше энергии, чем остальные компоненты на плате, так как отвечает за вращение шпинделя и движение головок. Ядро предусилителя-коммутатора способно работать, будучи нагретым до 100° C! Когда на НЖМД подаётся питание, микроконтроллер выгружает содержимое флеш-микросхемы в память и начинает выполнение заложенных в неё инструкций. Если коду не удастся должным образом загрузиться, то HDD не сможет даже начать раскрутку. Также флеш-память может быть встроена в микроконтроллер, а не содержаться на плате.

Расположенный на схеме датчик вибрации (shock sensor) определяет уровень тряски. Если он сочтёт её интенсивность опасной, то будет послан сигнал контроллеру управления двигателем и головками, после чего он немедленно паркует головки или вовсе останавливает вращение HDD. В теории, данный механизм призван обеспечивать защиту HDD от различных механических повреждений, правда, на практике у него это не сильно выходит. Поэтому не стоит ронять жёсткий диск, ведь это способно повлечь за собой неадекватную работу вибродатчика, что может стать причиной полной неработоспособности устройства. Некоторые НЖМД обладают сверхчувствительными к вибрации датчиками, которые реагируют на малейшее её проявление. Данные, которые получает VCM, помогают в корректировке движения головок, поэтому диски оборудуются как минимум двумя такими датчиками.

Ещё одно устройство, созданное для защиты HDD — ограничитель переходного напряжения (Transient Voltage Suppression, TVS), призванный предотвращать возможный выход из строя в случае скачков напряжения. На одной схеме таких ограничителей может быть несколько.

Интегральная микросхема в более близком рассмотрении в HDD

Поверхность гермоблока

Под интегральной платой располагаются контакты от моторов и головок. Тут же можно увидеть почти невидимое техническое отверстие (breath hole), которое выравнивает давление внутри и снаружи герметичной зоны блока, разрушающее миф о том, что внутри винчестера находится вакуум. Внутренняя его область покрыта специальным фильтром, который не пропускает пыль и влагу непосредственно в HDD.

Поверхность герметического блока HDD

Внутренности гермоблока

Под крышкой герметичного блока, представляющей собой обычный пласт металла и резиновую прокладку, которая защищает его от попадания влаги и пыли, находятся магнитные диски.

Крышка гермоблока HDD

Они также могут называться блинами или пластинами (platters). Диски обычно создаются из стекла или алюминия, который был предварительно отполирован. Затем они покрываются несколькими слоями различных веществ, в числе которых присутствует и ферромагнетик — благодаря ему и имеется возможность записывать и хранить информацию на жёстком диске. Между пластинами и над самым верхним блином располагаются разделители (dampers or separators). Они выравнивают потоки воздуха и снижают акустические шумы. Обычно изготавливаются из пластика или алюминия.

Внутренности герметического блока В HDD

Сепараторные пластины, которые были изготовлены из алюминия, лучше справляются с понижением температуры воздуха внутри герметичный зоны.

Сепараторы и блины в приближении В HDD

Блок магнитных головок

На концах кронштейнов, находящихся в блоке магнитных головок (Head Stack Assembly, HSA), расположены головки чтения/записи. Когда шпиндель остановлен, они должны находиться в препаровочной области — это место, где располагаются головки исправного жёсткого диска в то время, когда вал не работает. В некоторых HDD парковка происходит на пластиковых препаровочных областях, которые расположены вне пластин.

Препаровочная зона в HDD

Для нормальной работы жёсткого диска требуется как можно более чистый воздух, содержащий минимум сторонних частиц. Со временем в накопителе образовываются микрочастицы смазки и металла. Чтобы их выводить, HDD оборудуются циркуляционными фильтрами (recirculation filter), которые постоянно собирают и задерживают очень маленькие частицы веществ. Они устанавливаются на пути воздушных потоков, которые образуются из-за вращения пластин.

Циркуляционный фильтр в HDD

В НЖМД устанавливают неодимовые магниты, способные притягивать и удерживать вес, который может больше собственного в 1300 раз. Предназначение этих магнитов в HDD — ограничение движения головок путем удержания их над пластиковыми или алюминиевыми блинами.

Неодимовые магниты В HDD

Ещё одной частью блока магнитных головок является катушка (voice coil). Вместе с магнитами она образует привод БМГ, который вместе с БМГ составляет позиционер (actuator) — устройство, перемещающее головки. Защитный механизм для этого устройства называется фиксатором (actuator latch). Он освобождает БМГ, как только шпиндель наберёт достаточное число оборотов. В процессе освобождения участвует давление потока воздуха. Фиксатор предотвращает какие-либо движения головок в препаровочном состоянии.

Катушка и фиксатор В HDD

Под БМГ будет находиться прецизионный подшипник. Он поддерживает плавность и точность данного блока. Тут же находится выполненная из алюминиевого сплава деталь, которая называется коромыслом (arm). На её конце, на пружинной подвеске, расположены головки. От коромысла идет гибкий кабель (Flexible Printed Circuit, FPC), ведущий в контактную площадку, которая соединяется с платой электроники.

Коромысло, подшипник, гибкий кабель В HDD

Вот так выглядит катушка, которая соединена с кабелем:

Катушка, соединённая с кабелем В HDD

Здесь можно увидеть подшипник:

Подшипник В HDD

Вот тут изображены контакты БМГ:

Контакты БМГ В HDD

Прокладка (gasket) помогает обеспечить герметичность сцепления. Благодаря этому в блок с дисками и головками воздух попадает только через отверстие, которое выравнивает давление. Контакты данного диска покрыты тончайшей позолотой, что улучшает проводимость.

Прокладка в HDD

Типичная сборка кронштейна:

Классическая конструкция коромысла в HDD

На окончаниях пружинных подвесов находятся малогабаритные детали — слайдеры (sliders). Они помогают считывать и записывать данные, поднимая головку над пластинами. В современных накопителях головки работают, располагаясь на расстоянии 5-10 нм от поверхности металлических блинов. Элементы считывания и записи информации расположены на самых концах слайдеров. Они настолько малы, что увидеть их можно только воспользовавшись микроскопом.

Слайдер в HDD

Эти детали не являются абсолютно плоскими, так как имеют на себе аэродинамические канавки, служащие для стабилизации высоты полёта слайдера. Воздух под ним создаёт подушку (Air Bearing Surface, ABS), которая поддерживает параллельный поверхности пластины полёт.

Элементы записи и чтения на слайдере в HDD

Предусилитель — чип, отвечающий за управление головками и усиление сигнала к ним или от них. Расположен он непосредственно в БМГ, потому как сигнал, который производят головки, обладает недостаточной мощностью (около 1 ГГц). Без усилителя в герметичной зоне он бы просто рассеялся по пути к интегральной схеме.

Предусилитель в HDD

От этого устройства в сторону головок идёт больше дорожек, нежели к герметичной зоне. Объясняется это тем, что жёсткий диск может взаимодействовать только с одной из них в определённый момент времени. Микропроцессор отправляет запросы предусилителю, чтобы он выбрал нужную ему головку. От диска к каждой из них идёт по несколько дорожек. Они отвечают за заземление, чтение и запись, управление миниатюрными приводами, работу со специальным магнитным оборудованием, которое может управлять слайдером, что позволяет увеличить точность расположения головок. Одна из них должна вести к нагревателю, который регулирует высоту их полёта. Работает эта конструкция так: из нагревателя тепло передаётся подвеске, которая соединяет слайдер и коромысло. Подвес создаётся из сплавов, которые имеют отличающиеся параметры расширения от поступающего тепла. При повышении температуры он изгибается в сторону пластины, тем самым уменьшая расстояние от неё до головки. При уменьшении количества тепла, происходит обратное действие — головка отдаляется от блина.

Вот таким образом выглядит верхний разделитель:

Верхний разделитель в HDD

На этой фотографии находится герметичная зона без блока головок и верхнего сепаратора. Также можно заметить нижний магнит и прижимное кольцо (platters clamp):

Герметичная зона без крышки в HDD

Данное кольцо сдерживает блоки блинов вместе, предотвращая всякое их движение относительно друг друга:

Прижимное кольцо в HDD

Сами пластины нанизаны на вал (spindle hub):

Нанизанные на шпиндель блины в HDD

А вот что находится под верхней пластиной:

Разделительные кольца в HDD

Как можно понять, место для головок создаётся при помощи специальных разделительных колец (spacer rings). Это высокоточные детали, которые производятся из немагнитных сплавов или полимеров:

Разделительное кольцо крупным планом

На дне гермоблока находится пространство для выравнивания давления, расположенное прямо под воздушным фильтром. Воздух, который находится вне герметичного блока, безусловно, содержит в себе частицы пыли. Для решения данной проблемы, устанавливается многослойный фильтр, который гораздо толще того же циркулярного. Иногда на нём можно обнаружить следы силикатного геля, который должен абсорбировать в себя всю влагу:

Пространство для выравнивания давления в HDD

Заключение

В этой статье было приведено подробное описание внутренностей HDD. Надеемся, этот материал был вам интересен и помог узнать много нового из сферы компьютерного оборудования.

ЗакрытьМы рады, что смогли помочь Вам в решении проблемы.
ЗакрытьОпишите, что у вас не получилось.

Наши специалисты постараются ответить максимально быстро.

Помогла ли вам эта статья?

ДА НЕТ

Для публикации сообщений создайте учётную запись или авторизуйтесь

Вы должны быть пользователем, чтобы оставить комментарий

Устройство жесткого диска компьютера

Жесткий диск состоит из пяти основных частей. И первая из них – интегральная схема, которая синхронизирует работу диска с компьютером и управляет всеми процессами.

integralnaia-skhema-zhestkogo-diska

Вторая часть – электромотор (шпиндель), заставляет вращаться диск со скоростью примерно 7200 об/мин, а интегральная схема поддерживает скорость вращения постоянной.

А теперь третья, наверное самая важная часть – коромысло, которое может как записывать, так и считывать информацию. Конец коромысла обычно разделен, для того чтобы можно было работать сразу с несколькими дисками. Однако головка коромысла никогда не соприкасается с дисками. Существует зазор между поверхностью диска и головкой, размер этого зазора примерно в пять тысяч раз меньше толщины человеческого волоса!

Но давайте все же посмотрим, что случится, если зазор исчезнет и головка коромысла соприкоснется с поверхностью вращающегося диска. Мы все еще со школы помним, что F=m*a (второй закон Ньютона, по-моему), из которого следует, что предмет с небольшой массой и огромным ускорением – становится невероятно тяжелым. Учитывая огромную скорость вращения самого диска, вес головки коромысла становится весьма и весьма ощутимым. Естественно, что повреждение диска в таком случае неизбежно. Кстати, вот что случилось с диском, у которого этот зазор по каким то причинам исчез:

povrezhdenie-zhestkogo-diska

Так же важна роль силы трения, т.е. ее практически полного отсутствия, когда коромысло начинает считывать информацию, при этом смещаясь до 60 раз за секунду. Но постойте, где же здесь находится двигатель, что приводит в движение коромысло, да еще с такой скоростью? На самом деле его не видно, потому что это электромагнитная система, работающая на взаимодействии 2 сил природы: электричества и магнетизма. Такое взаимодействия позволяет разгонять коромысло до скоростей света, в прямом смысле.

dvigatel-koromysla-zhestkogo-diska

Четвертая часть – сам жесткий диск, это то, куда записывается и откуда считывается информация, кстати их может быть несколько.

Ну и пятая, завершающая часть конструкции жесткого диска – это конечно же корпус, в который устанавливаются все остальные компоненты. Материалы применяются следующие: почти весь корпус выполнен из пластмассы, но верхняя крышка всегда металлическая. Корпус в собранном виде нередко называют “гермозоной”. Бытует мнение, что внутри гермозоны нету воздуха, а точнее, что там – вакуум. Мнение это опирается на тот факт, что при таких высоких скоростях вращения диска, даже пылинка, попавшая внутрь, может натворить много нехорошего. И это почти верно, разве что вакуума там никакого нету – а есть очищенный, осушенный воздух или нейтральный газ – азот например. Хотя, возможно в более ранних версиях жестких дисков, вместо того, чтобы очищать воздух – его просто откачивали.

Это мы говорили про компоненты, т.е. из чего состоит жесткий диск. Теперь давайте поговорим про хранение данных.

Винчестер или жёсткий диск : в чём разница?

Всё реже в компьютерной литературе встречается понятие винчестер, которое ещё недавно было популярным в качестве понятия хранилища данных и синонима жёсткого диска. Оно уходит в небытие, так как фактически жёсткий диск винчестером называть нельзя. Винчестер – или диск Винчестера – одно из ранних устройств, применявшихся в компьютерах IBM, и являвшееся, по сути, частично съёмным устройством.

винчестер

Как видите его устройство очень напоминает устройство самого современного жёсткого диска. Это устройство впервые увидело свет в уже далёком 1973, стало известным под названием модель 3340 и было способно хранить несколько десятков Мбайт данных: 30 Мб постоянной и 30 Мб съёмной памяти в виде снимаемого картриджа. Отсюда и название по аналогии с одноимённой американской винтовкой конца 19 века «Винчестера .30-30».

жёсткий диск

Сегодня жёсткий диск это устройство, которое характеризуется определённым набором  параметров. Как покупателей и потребителей нас интересуют самые главные из них:

Объём памяти

Скорость вращения

Размер буфера

Объём памяти. Здесь всё просто и логично. Чем больше объём, тем лучше. Производители могут быть разными, устройства различаться по качеству. Однако 500Гб это меньше, чем 1Тб smiley-laughing.gif. Считаем истину непреложной.

Скорость вращения шпинделя. Их две, и они стандартны: 5400 и 7200 об/мин. Встречаются диски с изменяемыми скоростями и работающие на более высоких скоростях, но это уже удел профессионалов и в обычном компьютерном магазине вы их не найдёте. Здесь тоже всё просто: чем быстрее скорость, тем быстрее ваш диск. Однако есть некоторые незначительные нюансы. Так, для настольных компьютеров рекомендуется выбирать жёсткий диск с максимальной скоростью. Но если вы решили, что в компьютере найдётся место для двух устройств, распределите их так: жёсткий диск под систему или системы с максимальной скоростью меньшего объёма и HDD со скоростью 5400 об/мин, но объёмом побольше. Кстати, в ноутбуке вы, скорее всего, не найдёте HDD на 7200 об/мин.

Размер буфера обмена данными с HDD. Размер буфера также определяется количеством памяти. Здесь тоже всё просто: чем выше, тем лучше. При покупке обратите внимание на размер: если вам продают жёсткий диск с размером буфера меньше 64 Мб – вам подсовывают старьё.

Ещё одним фактором при выборе HDD может послужить количество пластин или блинов внутри диска. Этот показатель редко выставляется на ценнике, его проще найти по модели устройства.  Считается, что меньшее количество блинов свидетельствует о более высокой бесшумности и надёжности. Моя личная практика такого подтверждения не находит.

Интерфейс жёсткого диска. Под мудрёным названием скрывается лишь способ подключения к разъёмам на материнской плате. Интерфейсов немало, но вам в магазине предложат только два: IDE и SATA. Сегодня предложат уже один – SATA. Первый устарел, современные платы выпускаются уже без слотов под него. Но если вы решили усовершенствовать своего «старичка», уточните прямо на месте.

жёсткий диск IDE

Далее по выбору интерфейса. SATA-шных дисков успело наплодиться. Мне известны уже три серии или поколений: I, II и III. Различаются скоростью передачи данных: 1,5 Гбайт, 3 Гбайт и 6 Гбайт. Отличаются только скоростями. Материнская плата тоже имеет соответствующий слот под соответствующую скоростью. Но эти интерфейсы взаимозаменяемы.

жёсткий диск SATA

֣

Subscribe.Ru
 

2005-06-27

, , , . , , . — .

, . , – . , , , : , -.

, . , , /. . , , , , , .

. , . . . . , , , , . , , .

, . , . , .

, . , “” . , .

IBM , . , , . , . , . IBM ” “. 10-100 ! , , / .

5,25″: , . . , . , .

“”, 2000-2005
–, . , 3, . 121
. (863) 266-00-33 (863) 290-51-21
Subscribe.Ru

:
:comp.hard.hddinfo
     

banner_sendsay3.png

Характеристики жестких дисков

Объем HDD – основной его параметр, оказывающий наибольшее влияние, как на цену устройства, так и на его привлекательность для покупателя. Требования программ к свободному месту на диске постоянно растут, как и объемы видеофайлов и файлов с фотографиями, поэтому желание приобрести накопитель большого объема вполне понятно. С другой стороны, HDD большого объема стоят дороже иного компьютера. Какого же объема диск выбрать?

Как видно из графика, наименьшую цену за гигабайт имеют диски объемом 3-6 ТБ. Прицениваясь к диску объемом 10 ТБ и более, проверьте – не будет ли более выгодной покупка двух дисков меньшего объема? И уж совсем дорогой выходит гигабайт объема при покупке дисков в 1ТБ и менее.

При покупке HDD емкостью более 2 ТБ, убедитесь, что SATA-контроллер материнской платы вашего компьютера поддерживает жесткие диски объемом более 2,2 ТБ, и что у вас установлена операционная система с поддержкой GPT (GUID Partition Table – новый стандарт таблицы разделов жесткого диска, способный адресовать более 2 ТБ). Поддержка GPT реализована в Windows начиная с версии 7, в MAC OS с версии 10.6 и во всех современных дистрибутивах linux. Если какое-то из этих двух условий не выполняется, вы не сможете использовать более 2,2 ТБ вашего нового HDD.

Если же вы хотите, чтобы загрузка также производилась с нового жесткого диска, материнская плата должна иметь UEFI BIOS. Все современные материнские платы поддерживают диски большого размера, затруднения могут возникнуть только с “материнками”, выпущенными до 2011 года.

Скорость вращения шпинделя оказывает прямое влияние на скорость чтения и записи данных с жесткого диска. Высокооборотные диски в среднем имеют большую скорость передачи данных, чем низкооборотные, но также они более шумные и потребляют больше энергии.

Однако сравнивать диски разных производителей только по этому параметру не стоит: скорость чтения/записи зависит не только от скорости вращения шпинделя, но и от скорости позиционирования головок, от схемотехники контроллера жесткого диска и т.д. Поэтому, если вам важна скорость доступа к данным, лучше обратить внимание непосредственно на скоростные характеристики.

Максимальная скорость передачи данных представляет собой максимально достижимую на данной модели скорость чтения/записи. Скорость эта достигается только при определенных условиях, в обычной работе такие скорости достигаются только при переписывании нефрагментированных (состоящих из последовательно расположенных на диске блоков) файлов большого объема; обычные скорости будут намного меньше.

Если использование диска предполагает работу с большим количеством мелких файлов, стоит обратить внимание на среднее время доступа и среднее время задержки – чем меньше будут эти параметры, тем быстрее головка диска позиционируется на новый файл и тем быстрее будет работа с мелкими или фрагментированными файлами.

Заполнение диска гелием позволяет уменьшить аэродинамические эффекты, тормозящие вращение дисков и приводящие к вибрации. В результате, гелиевые жесткие диски имеют меньшее энергопотребление и меньшую шумность по сравнению с обычными, заполненными воздухом – это особенно важно для высокооборотных HDD. Также это позволяет уменьшить толщину дисков, что ведет к росту быстродействия и объема (за счет большего количества дисков в HDD).

Однако, такие HDD дороже обычных и очень требовательны к качеству изготовления – при нарушении герметичности гелий быстро «утекает» из корпуса, и не предназначенные для работы в воздушной атмосфере диски быстро приходят в негодность.

Назначение жесткого диска, указанное производителем, может помочь в выборе, но опираться только на него не стоит, поскольку нет четких критериев, по которым можно однозначно определить назначение HDD. Кроме того, иногда указание какого-нибудь назначения является просто маркетинговой уловкой.

Тем не менее, на этот параметр следует обратить внимание, когда режим работы жесткого диска отличается от обычного. Например, если на HDD ведется непрерывная круглосуточная запись (видеосистема) или он работает круглосуточно с сильной загрузкой, постоянно выполняя операции записи и чтения (сервер).

Если диск приобретается для установки в RAID (массив жестких дисков повышенной надежности хранения данных), обратите также внимание на оптимизацию под RAID-массив.

Обычный жесткий диск при попытке чтения со сбойного кластера, повторяет эту попытку несколько раз, пытаясь восстановить данные. HDD типа «RAID Edition» при сбое попытку чтения не повторяет, а сразу сообщает RAID-контроллеру о «сомнительном» кластере – это позволяет избежать падения производительности при появлении сбойных участков на одном из дисков массива.

Поддержка NCQ также может ускорить работу с диском в некоторых случаях – HDD с поддержкой NCQ способен оптимизировать находящуюся в памяти очередь команд к диску. Например, если в очереди находится несколько команд позиционирования/чтения, контроллер жесткого диска упорядочит эту очередь так, чтобы минимизировать перемещение головки.

Объем кэш-памяти. Кэш-память используется для буферизации данных: перед записью на диск данные помещаются в неё, и, если они потребуются компьютеру в ближайшее время, они будут прочитаны не с поверхности диска, а прямо из кэш-памяти, что, разумеется, в разы быстрее. Наличие кэш-памяти значительно ускоряет работу с данными на жестком диске, особенно с часто используемыми – индексами, загрузочными записями, таблицами размещения файлов, и т.д.

Объем кэш-памяти влияет на скорость работы незначительно – минимального для современных жестких дисков объема кэша в 32 МБ вполне достаточно для хранения служебной информации о диске. Впрочем, если использование диска предполагает работу с часто использующимися мелкими файлами (системный диск, диск сервера) то лучше выбрать модель с кэшем побольше – это увеличит вероятность того, что нужный файл окажется в буфере и доступ к нему будет осуществлен в разы быстрее. Если диск используется для хранения файлов большого объема, то размер буфера на производительность особого влияния оказывать не будет.

Гибридный SSHD-накопитель в качестве кэша второго уровня использует твердотельный диск объемом в несколько ГБ. Поскольку скорость чтения данных с SSD намного выше, чем с HDD, это дает прирост производительности, если на диске расположены часто используемые данные. Такие диски можно использовать в качестве системных, на них можно располагать рабочие программы и базы данных – это даст заметный прирост производительности.

Интерфейс. Современные диски для передачи данных используют либо SATA третьего поколения, либо серверный SAS. HDD SATA можно подключать к контроллеру SAS, а наоборот – нет.

Пропускная способность интерфейсов SATA III и SAS различная – первый дает максимум 6 Гбит/с, второй – 12.

На уровень шума во время работы и в простое следует обратить внимание, если диск приобретается для домашнего компьютера или если вы не любите посторонних звуков во время работы. Некоторые диски создают при работе шум уровнем до 36 дБ – это можно сравнить с громкостью спокойного разговора.

То, что жесткие диски «боятся» ударов и вибраций – факт общеизвестный, но несколько преувеличенный – для закрепленных в корпусе компьютера HDD это не настолько важно, как для внешних жестких дисков. Большинство HDD способны без вреда для себя перенести падение на твердую поверхность с высоты 1″ (ударостойкость 40G) во время работы и с высоты более метра – в выключенном состоянии. Если же ваш компьютер испытывает в работе более серьезные нагрузки, выбирайте среди моделей с большей ударостойкостью.

Жёсткий диск: как влияет на его работу ориентация в пространстве?

Не задаваться этим вопросом может лишь тот, кому нет дела до того, что внутри компьютера понавешали. Однако те, кто хоть раз столкнулся с заменой жёсткого диска это вопрос себе задавали. Давайте обратимся к первоисточникам. Вот что говорят по этому поводу сами производители винчестеров. Информация стара как мир, но думаю, за последние десяток лет техника лишь прибавила в интеллектуальном развитии: я привожу её как есть, без купюр.

Hitachi

Диск будет функционировать во всех положения системы координат (я так понимаю, речь идёт именно о 6-ти). Уровни производительности и наличия ошибок останутся в пределах заявленной спецификации даже в случае, когда диск сориентирован в отличном положении, в котором был отформатирован.

Western Digital

Физическое расположение диска: жёсткие диски от WD будут функционировать нормально в положениях контроллером вверх или вниз (а также во всех направлениях в системе координат: X, Y и Z)

Maxtor

Жёсткий диск может быть сориентирован во всех положениях

Samsung

Если ваш жёсткий диск надёжно закреплён, он может быть установлен и вертикально и горизонтально в зависимости от того, какую структуру имеет корпус компьютера.

Далее. Был задан и конкретный вопрос по поводу “неправильной” ориентации диска, когда он закреплён под некоторым углом, а также предпочитаемых углах поворота. Вот информация от производителей в виде таблицы:

Производитель Как ответили Ответ на вопрос——- ——————— ———————WD Техподдержка, email 90 градусов Hitachi Hitachi по документации 90 градусовSamsung Техподдержка, телефон 90 градусов Fujitsu Техподдержка, в чате 90 градусов +- 5 Seagate Техподдержка, e-mail 90 градусов Maxtor Техподдержка, телефон 90 как угодно

Дальнейшие пояснения излишни. Ссылка на источник.

Как и в каком виде хранятся данные на жестком диске компьютера

Данные хранятся в узких дорожках на поверхности диска. При производстве, на диск наносится более 200 тысяч таких дорожек. Каждая из дорожек разделена на секторы.

dorozhki-i-sektora-zhestkogo-diska

Карты дорожек и секторов позволяют определить, куда записать или где считать информацию. Опять же вся информация о секторах и дорожках находится в памяти интегральной микросхемы, которая, в отличие от других компонентов жесткого диска, размещена не внутри корпуса, а снаружи и обычно снизу.

Сама поверхность диска – гладкая и блестящая, но это только на первый взгляд. При более близком рассмотрении структура поверхности оказывается сложнее. Дело в том, что диск изготавливается из металлического сплава, покрытого ферромагнитным слоем. Этот слой как раз и делает всю работу. Ферромагнитный слой запоминает всю информацию, как? Очень просто. Головка коромысла намагничивает микроскопическую область на пленке (ферромагнитном слое), устанавливая магнитный момент такой ячейки в одно из состояний: о или 1. Каждый такой ноль и единица называются битами. Таким образом, любая информация, записанная на жестком диске, по-факту представляет собой определенную последовательность и определенное количество нулей и единиц. Например, фотография хорошего качества занимает около 29 миллионов таких ячеек, и разбросана по 12 различным секторам. Да, звучит впечатляюще, однако в действительности – такое огромное количество битов занимает очень маленький участок на поверхности диска. Каждый квадратный сантиметр поверхности жесткого диска включает в себя несколько десятков миллиардов битов.

Войти

Уже есть аккаунт? Войти в систему.

Войти

  • Последние посетители   0 пользователей онлайн

    Ни одного зарегистрированного пользователя не просматривает данную страницу

Жёсткий диск – принцип работы.

Несущая в себе информационная часть жёсткого диска – отполированный блин или несколько блинов – состоит из миллиардов микроскопических разделов. Каждый из них можно намагнитить (это будет читаться компьютером как «сигнал есть» или 1) и размагнитить («сигнала нет» – 0). Физические законы, известные нам ещё со школы, используются здесь, так как намагниченные и размагниченные области сохраняют свойства, даже если питание компьютера выключить. Жёсткий диск, таким образом, сохранит всё, что вы заставили его запомнить.

Блины жёсткого диска сделаны из прочнейших представителей стекла или алюминиевых сплавов, покрытых мельчайшим слоем металла, который обладает способностью намагничиваться и размагничиваться. На каждый из блинов приходится по две читающие головки с каждой из сторон (в том числе с внутренней). Обе части – рычаг с головкой и блин – приходят в движение во время работы: соленоид заставляет головку «бегать» по поверхности туда-сюда по всей плоскости блина, а сам блин вращается со скоростью, вам известной. Сами головки поверхности не касаются: между ними свободное воздушное или газовое пространство.

Чтение и запись на жёсткий диск .

считывающая головка

Вы уже знаете, что данные, сохраняемые на HDD, это намагничивание или размагничивание головкой миллиардов секторов блина, которые этой же головкой возвращаются как совокупность сигналов 1 и 0, формируя биты, байты (и т.д.) информации. Секторы жёсткого диска концентрическими круговыми линиями группируются в треки. Вся эта совокупность дешифруется системой как книга, видео, фотография и т.д. Но некоторая часть диска предназначена только для создания и хранения карты диска. Карта – это раздел диска, где хранится информация о том, какие секторы уже заняты, а куда ещё можно что-то записать. Например, в Windows она называется FAT (File Allocation Table – таблица размещения файлов). Так что при чтении и записи данных с диска система сначала обращается к карте диска в поисках занятых и свободных секторов. Но перед продажей проводится процедура физического форматирования для придания основы для записи операционной системы. После неё HDD выглядит так:

структура HDD

Жёсткий диск . Эволюция.

Как вы видите, ваш жёсткий диск – устройство не самое простое. Подобранные мельчайшие детали, микроскопические расстояния, огромные скорости вращения и жесточайшие требования к содержанию частиц в воздухе при производстве – всё это делает жёсткий диск настоящим космическим устройством, за работой которого нужно внимательно следить. Однако в качестве готового устройства современный жёсткий диск – очень надёжная вещь, которая способна порой выдерживать даже самые безбашенные нагрузки и пертурбации. Один из моих винчестеров, «случайно» выкинутых с приличной высоты (7 этажей), прекрасно заработал после незабываемого полёта. Но повторять не советую.

Хотите сами установить новый или дополнительный жёсткий диск?

Читайте, как установить HDD в компьютер.

Выбираем и следим за HDD.

На что стоит обратить внимание при покупке? Ответ на вопрос вы уже знаете. Он дан в начале статьи. Определитесь с интерфейсом подключения HDD и подберите по параметрам, указанным выше. В процессе работы не допускайте:

  • Эксплуатации в задымлённой комнате
  • Частого физического форматирования
  • Постукиваний и ударов, особенно во время работы
  • Неправильной работы системы (особенно при включении и отключении компьютера
  • Не играйте сильными магнитами рядом с винчестером

Более подробно как продлить жизнь жёсткому диску, описано в статье “Почему сломался жёсткий диск“.

Что далее?

На смену работоспособным, в принципе, вечным и относительно уже недорогим устройствам пришли твердотелы SSD. Всё, чем он вам может не понравиться, это лишь его стоимость. Габариты, вес, скорость обмена данными, долговечность – преимущества этого хранилища перед предшественником неоспоримы.

ssd против hdd

Двигающихся  и вращающихся частей нет, операции в физическом пространстве не ограничены, дефрагментация файловой системы на таком диске стремится к нулю – от этого понятия можно будет отказаться. Теми же остаются требования к броскам температуры. Так что принимаем к сведению: появилась возможность перейти на SSD – даже не размышляйте, берите. Старичок HDD пусть просто хранит информацию, выступая в качестве складского хозяйства. Это не статья о проблеме выбора между HDD и SSD, однако на данный момент различия между двумя типами дисков оформились примерно так:

сравнение hdd и ssd

Описание работы SSD выходит за рамки статьи, так что, если выбор всё-таки станет остро, можно принимать решение в пользу…

HDD:

  • если деньги закончили начинаться
  • … но объёмы нужны серьёзные
  • вы привыкли к существующим скоростям работы в Windows (или другой ОС) и они вас устраивают.

SSD:

  • если очень хочется посмотреть, как Windows “летает”
  • вы не собираетесь хранить данные под десяток терабайт; 1-2 Тб хватит за глаза.

Успехов.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...