Формула Бернулли. Примеры решения задач

Бесплатные примеры решения задач по теории вероятностей на тему: формула Бернулли. Подробные объяснения, формулы, комментарии к решенным задачам на формулу Бернулли (независимые повторные испытания)

Калькуляторы на формулу Бернулли

Обратите внимание на следующие разделы, где разобраны типовые задачи на формулу Бернулли. Вы можете решить или проверить вычисления своих заданий с помощью онлайн-калькуляторов. Теорию по этой теме можно найти в онлайн-учебнике.

  • Задача про партии в шахматы
  • Задача про выстрелы
  • Задача про мальчиков и девочек
  • Задача про лотерейные билеты
  • Задача о наивероятнейшем значении
  • Формула Пуассона

Еще: решаем в Excel по формуле Бернулли.

Полезная страница? Сохрани или расскажи друзьям

Теорема Бернулли

Если производится серия из 100task.ru независимыхиспытаний Бернулли, в каждом из которых «успех» появляется с вероятностью 100task.ru, то вероятность того, что «успех» в 100task.ru испытанияхпоявится ровно 100task.ru раз,выражается формулой:

100task.ru

где 100task.ru – вероятность«неудачи».

100task.ru – число сочетаний 100task.ru элементов по 100task.ru (см. основные формулы комбинаторики)

Эта формула называетсяформулой Бернулли.

Формула Бернулли позволяетизбавиться от большого числа вычислений — сложения и умножения вероятностей -при достаточно большом количестве испытаний.

Схему испытаний Бернуллиназывают также биномиальной схемой, а соответствующие вероятности –биномиальными, что связано с использованием биномиальных коэффициентов 100task.ru.

Распределение по схеме Бернулли позволяет, в частности, найти наивероятнейшее число наступления события.

Если число испытаний n велико, то пользуются:

  • локальной формулой Муавра – Лапласа
  • интегральной формулой Муавра – Лапласа
  • формулой Пуассона

Пример решения задачи

Формула Бернулли: теория

На этом уроке будем находить вероятность наступления события в независимых испытаниях при повторении испытаний. Испытания называются независимыми, если вероятность того или иного исхода каждого испытания не зависит от того, какие исходы имели другие испытания. Независимые испытания могут проводиться как в одинаковых условиях, так и в различных. В первом случае вероятность появления некоторого события во всех испытаниях одна и та же, во втором случае она меняется от испытания к испытанию.

Примеры независимых повторных испытаний:

  • выйдет из строя один из узлов прибора или два, три узла, причём выход из строя каждого узла не зависит от другого узла, а вероятность выхода из строя одного узла постоянна во всех испытаниях;
  • произведённая в некоторых постоянных технологических условиях деталь, или три, четыре, пять деталей, окажутся нестандартными, причём одна деталь может оказаться нестандартной независимо от любой другой детали и вероятность того, что деталь окажется нестандатной, постоянна во всех испытаниях;
  • из нескольких выстрелов по мишени один, три или четыре выстрела попадают в цель независимо от исходов других выстрелов и вероятность попадания в цель постоянна во всех испытаниях;
  • при опускании монеты автомат сработает правильно один, два или другое число раз независимо от того, какой результат имели другие опускания монеты, и вероятность того, что автомат сработает правильно, постоянна во всех испытаниях.

Эти события можно описать одной схемой. Каждое событие наступает в каждом испытании с одной и той же вероятностью, которая не изменяется, если становятся известными результаты предыдущих испытаний. Такие испытания называются независимыми, а схема называется схемой Бернулли. Предполагается, что такие испытания могут быть повторены как угодно большое количество раз.

Если вероятность p наступления события A в каждом испытании постоянна, то вероятность того, что в n независимых испытаниях событие A наступит m раз, находится по формуле Бернулли:

формула бернуллли в наиболее общем виде (где q = 1 – p – вероятность того, что событие не наступит)

или

формула бернулли в альтернативной форме

Поставим задачу – найти вероятность того, что событие такого типа в n независимых испытаниях наступит m раз.

Формула Бернулли: список решений задач

Ниже даны ссылки на страницы с текстами задач на тему “Формула Бернулли”. Все задачи имеют полное и качественное решение.

1 … 18 19 20 21 22 … 40 

Числовые характеристики случайной величины, распределенной по биноминальному закону

Математическое ожидание случайной величины Х, распределенной по биноминальному закону.
M[X]=np

Дисперсия случайной величины Х, распределенной по биноминальному закону.
D[X]=npq

Пример №1. Изделие может оказаться дефектным с вероятностью р = 0.3 каждое. Из партии выбирают три изделия. Х – число дефектных деталей среди отобранных. Найти (все ответы вводить в виде десятичных дробей): а) ряд распределения Х; б) функцию распределения F(x).
Решение. Случайная величина X имеет область значений {0,1,2,3}.
Найдем ряд распределения X.
P3(0) = (1-p)n = (1-0.3)3 = 0.34
P3(1) = np(1-p)n-1 = 3(1-0.3)3-1 = 0.44

P_{3}(2) = {3!}/{2!(3-2)!}0.3^{2}(1-0.3)^{3-2} = 0.19

P3(3) = pn = 0.33 = 0.027

xi 0 1 2 3
pi 0.34 0.44 0.19 0.027

Математическое ожидание находим по формуле M[X]= np = 3*0.3 = 0.9
Проверка: m = ∑xipi.
Математическое ожидание M[X].
M[x] = 0*0.34 + 1*0.44 + 2*0.19 + 3*0.027 = 0.9
Дисперсию находим по формуле D[X]=npq = 3*0.3*(1-0.3) = 0.63
Проверка: d = ∑x2ipi – M[x]2.
Дисперсия D[X].
D[X] = 02*0.34 + 12*0.44 + 22*0.19 + 32*0.027 – 0.92 = 0.63
Среднее квадратическое отклонение σ(x).
sigma(x) = sqrt{D[X]} = sqrt{0.63} = 0.79
Функция распределения F(X).
F(xF(0F(1F(2F(x>3) = 1

  1. Вероятность появления события в одном испытании равна 0.6. Производится 5 испытаний. Составить закон распределения случайной величины Х – числа появлений события.
  2. Составить закон распределения случайной величины Х числа попаданий при четырех выстрелах, если вероятность попадания в цель при одном выстреле равна 0.8.
  3. Монету подбрасывают 7 раз. Найти математическое ожидание и дисперсию числа появлений герба. Примечание: здесь вероятность появление герба равна p = 1/2 (т.к. у монеты две стороны).

Пример №2. Вероятность появления события в отдельном испытании равна 0.6. Применяя теорему Бернулли, определите число независимых испытаний, начиная с которого вероятность отклонения частоты события от его вероятности по абсолютной величине меньше 0.1, больше 0.97. (Ответ: 801)

Пример №3. Студенты выполняют контрольную работу в классе информатики. Работа состоит из трех задач. Для получения хорошей оценки нужно найти правильные ответы не меньше чем на две задачи. К каждой задаче дается 5 ответов из которых только одна правильная. Студент выбирает ответ наугад. Какая вероятность того, что он получит хорошую оценку?
Решение. Вероятность правильно ответить на вопрос: p=1/5=0.2; n=3.
Эти данные необходимо ввести в калькулятор. В ответ см. для P(2)+P(3).

Пример №4. Вероятность попадания стрелка в мишень при одном выстреле равна (m+n)/(m+n+2). Производится n+4 выстрела. Найти вероятность того, что он промахнется не более двух раз.

Примечание. Вероятность того, что он промахнется не более двух раз включает в себя следующие события: ни разу не промахнется P(4), промахнется один раз P(3), промахнется два раза P(2).

Пример №5. Определите распределение вероятностей числа отказавших самолётов, если влетает 4 машины. Вероятность безотказной работы самолета Р=0.99. Число отказавших в каждом вылете самолётов распределено по биноминальному закону.

Задача 4. Среди 11 изделий 7 изделия первого сорта. Наудачу выбрали четыре изделия. случайная величина X – число первосортных изделий среди выбранных четырех изделий.
1. Составить закон распределения случайной величины X.
2. Построить полигон относительных частот.
3. Найти функцию распределения F(x) случайной величины X, построить ее график.
4. Найти характеристики случайной величины X:
а) математическое ожидание M(X);
б) дисперсию D(X), среднее квадратическое отклонение σ(Х);
в) моду M0.
Случайная величина X имеет область значений (0,1,2,…,n). Вероятности этих значений можно найти по формуле:
Pn(m) = Cmnpmqn-m
где Cmn – число сочетаний из n по m.
bernoulli-image001.gif
Найдем ряд распределения X.
P4(0) = (1-p)n = (1-0.636)4 = 0.0176
P4(1) = np(1-p)n-1 = 4(1-0.636)4-1 = 0.12

P4(4) = pn = 0.6364 = 0.16

xi 0 1 2 3 4
pi 0,0176 0,12 0,32 0,37 0,16

Полигон относительных частот

bernoulli-image004.gif

Мода равна тому значению X, при котором вероятность максимальная. В данном примере максимальная вероятность p =0,37 соответствует X = 3.

Математическое ожидание находим по формуле m = ∑xipi.
Математическое ожидание M[X].
M[x] = 0*0.0176 + 1*0.12 + 2*0.32 + 3*0.37 + 4*0.16 = 2.54
Дисперсию находим по формуле d = ∑x2ipi – M[x]2.

Дисперсия D[X].
D[X] = 02*0.0176 + 12*0.12 + 22*0.32 + 32*0.37 + 42*0.16 – 2.542 = 0.92601646

Среднее квадратическое отклонение σ(x).
bernoulli-image005.gif

Функция распределения F(X).
F(x≤0) = 0
F(0< x ≤1) = 0.01755518
F(1< x ≤2) = 0.12269340 + 0.01755518 = 0.14024858
F(2< x ≤3) = 0.32156460 + 0.14024858 = 0.46181318
F(3< x ≤4) = 0.37456972 + 0.46181318 = 0.8363829
F(x>4) = 1

bernoulli-image006.gif

Пример 1. Вероятность того, что трамвай подойдет к остановке строго по расписанию, равна 0,7. X – число трамваев, прибывших по расписанию из 4 исследуемых. Составить закон распределения дискретной случайной величины X, вычислить M(X), D(X), σ(X), построить многоугольник распределения и график функции распределения F(X).
Решение. Случайная величина X имеет область значений (0,1,2,…,n). Вероятности этих значений можно найти по формуле:
Pn(m) = Cmnpmqn-m
где Cmn – число сочетаний из n по m.
ebernoulli1.png
Найдем ряд распределения X.
P4(0) = (1-p)n = (1-0.7)4 = 0.0081
P4(1) = np(1-p)n-1 = 4(1-0.7)4-1 = 0.0756

P4(4) = pn = 0.74 = 0.2401

x 0 1 2 3 4
p 0.0081 0.0756 0.2646 0.4116 0.2401

Математическое ожидание находим по формуле m = ∑xipi.
Математическое ожидание M[X].
M[x] = 0*0.0081 + 1*0.0756 + 2*0.2646 + 3*0.4116 + 4*0.2401 = 2.8
Дисперсию находим по формуле d = ∑x2ipi – M[x]2.
Дисперсия D[X].
D[X] = 02*0.0081 + 12*0.0756 + 22*0.2646 + 32*0.4116 + 42*0.2401 – 2.82 = 0.84
Среднее квадратическое отклонение σ(x).
ebernoulli4.png

Пример 2. Вероятность того, что телевизор проработает гарантийный срок без поломки, равна 0.8. Закупили 4 телевизора. Какова вероятность того, что три телевизора не проработают гарантийный срок?
Решение. В поле вероятность вводим значение p = 1- 0 .8 = 0.2, поскольку нас интересует вероятность поломки.

ebernoulli.png

Ответ: Вероятность того, что три телевизора не проработают гарантийный срок равна 0.0256.

Повторные независимые испытания

На практике приходится сталкиваться с такими задачами, которые можно представить в виде многократно повторяющихся испытаний, в результате каждого из которых может появиться или не появиться событие A. При этом интерес представляет исход не каждого “отдельного испытания, а общее количество появлений события A в результате определенного количества испытаний. В подобных задачах нужно уметь определять вероятность любого числа m появлений события A в результате n испытаний. Рассмотрим случай, когда испытания являются независимыми и вероятность появления события A в каждом испытании постоянна. Такие испытания называются повторными независимыми.

Примером независимых испытаний может служить проверка на годность изделий, взятых по одному из ряда партий. Если в этих партиях процент брака одинаков, то вероятность того, что отобранное изделие будет бракованным, в каждом случае является постоянным числом.

Формула Бернулли

Воспользуемся понятием сложного события, под которым подразумевается совмещение нескольких элементарных событий, состоящих в появлении или непоявлении события A в i–м испытании. Пусть проводится n независимых испытаний, в каждом из которых событие A может либо появиться с вероятностью p, либо не появиться с вероятностью q=1-p. Рассмотрим событие B_m, состоящее в том, что событие A в этих n испытаниях наступит ровно m раз и, следовательно, не наступит ровно (n-m) раз. Обозначим A_i~(i=1,2,ldots,{n}) появление события A, a overline{A}_i — непоявление события A в i–м испытании. В силу постоянства условий испытания имеем

begin{gathered}P{A_1}=P{A_2}=cdots=P{A_n}=p,\P{overline{A}_1}=P{overline{A}_2}=cdots=P{overline{A}_n}=1-p=qend{gathered}

Событие A может появиться m раз в разных последовательностях или комбинациях, чередуясь с противоположным событием overline{A}. Число возможных комбинаций такого рода равно числу сочетаний из n элементов по m, т. е. C_n^m. Следовательно, событие B_m можно представить в виде суммы сложных несовместных между собой событий, причем число слагаемых равно C_n^m:

B_m=A_1A_2cdots{A_m}overline{A}_{m+1}cdotsoverline{A}_n+cdots+overline{A}_1overline{A}_2cdotsoverline{A}_{n-m}A_{n-m+1}cdots{A_n},

(3.1)

где в каждое произведение событие A входит m раз, а overline{A}(n-m) раз.

Вероятность каждого сложного события, входящего в формулу (3.1), по теореме умножения вероятностей для независимых событий равна p^{m}q^{n-m}. Так как общее количество таких событий равно C_n^m, то, используя теорему сложения вероятностей для несовместных событий, получаем вероятность события B_m (обозначим ее P_{m,n})

P_{m,n}=C_n^mp^{m}q^{n-m}quad text{or}quad  P_{m,n}=frac{n!}{m!(n-m)!}p^{m}q^{n-m}.

(3.2)

Формулу (3.2) называют формулой Бернулли, а повторяющиеся испытания, удовлетворяющие условию независимости и постоянства вероятностей появления в каждом из них события A, называют испытаниями Бернулли, или схемой Бернулли.

Пример 1. Вероятность выхода за границы поля допуска при обработке деталей на токарном станке равна 0,07. Определить вероятность того, что из пяти наудачу отобранных в течение смены деталей у одной размеры диаметра не соответствуют заданному допуску.

Решение. Условие задачи удовлетворяет требования схемы Бернулли. Поэтому, полагая n=5,,m=1,,p=0,!07, по формуле (3.2) получаем

P_{1,5}=C_5^1(0,!07)^{1}(0,!93)^{5-1}approx0,!262.

Пример 2. Наблюдениями установлено, что в некоторой местности в сентябре бывает 12 дождливых дней. Какова вероятность того, что из случайно взятых в этом месяце 8 дней 3 дня окажутся дождливыми?

Решение.

P_{3;8}=C_8^3{left(frac{12}{30}right)!}^3{left(1-frac{12}{30}right)!}^{8-3}=frac{8!}{3!(8-3)!}{left(frac{2}{5}right)!}^3{left(frac{3}{5}right)!}^5=56cdotfrac{8}{125}cdotfrac{243}{3125}=frac{108,864}{390,625}approx0,!2787.

Схема Бернулли: решенные задачи

Задача 1. Из $n$ аккумуляторов за год хранения $k$ выходит из строя. Наудачу выбирают $m$ аккумуляторов. Определить вероятность того, что среди них $l$ исправных.
$n = 100, k = 7, m = 5, l = 3.$

Задача 2. Устройство, состоящее из пяти независимо работающих элементов, включается за время Т. Вероятность отказа каждого из них за это время равна 0,2. Найти вероятность того, что откажут:
а) три элемента;
б) не менее четырех элементов;
в) хотя бы один элемент.

Задача 3. Сколько следует сыграть партий в шахматы с вероятностью победы в одной партии, равной 1/3, чтобы наивероятнейшее число побед было равно 5?

Задача 5. Пусть вероятность того, что телевизор потребует ремонта в течение гарантийного срока, равна 0,2. Найти вероятность того, что в течение гарантийного срока из 6 телевизоров: а) не более одного потребует ремонта; б) хотя бы один не потребует ремонта.

Задача 6. Что более вероятно выиграть у равносильного противника: не менее двух партий из трёх или не более одной из двух?

Задача 7. а) Найти вероятность того, что событие А появится не менее трех раз в четырех независимых испытаниях, если вероятность появления события А в одном испытании равна 0,4;
б) событие В появится в случае, если событие А наступит не менее четырех раз. Найти вероятность наступления события В, если будет произведено пять независимых испытаний, в каждом из которых вероятность появления события А равна 0,8.

Наивероятнейшее число появлений события

Наивероятнейшим числом появления события A в n независимых испытаниях называется такое число m_0, для которого вероятность, соответствующая этому числу, превышает или, по крайней мере, не меньше вероятности каждого из остальных возможных чисел появления события A. Для определения наивероятнейшего числа не обязательно вычислять вероятности возможных чисел появлений события, достаточно знать число испытаний n и вероятность появления события A в отдельном испытании. Обозначим P_{m_0,n} вероятность, соответствующую наивероятнейшему числу m_0. Используя формулу (3.2), записываем

P_{m_0,n}=C_n^{m_0}p^{m_0}q^{n-m_0}=frac{n!}{m_0!(n-m_0)!}p^{m_0}q^{n-m_0}.

(3.3)

Согласно определению наивероятнейшего числа, вероятности наступления события A соответственно m_0+1 и m_0-1 раз должны, по крайней мере, не превышать вероятность P_{m_0,n}, т. е.

P_{m_0,n}geqslant{P_{m_0+1,n}};quad P_{m_0,n}geqslant{P_{m_0-1,n}}

Подставляя в неравенства значение P_{m_0,n} и выражения вероятностей P_{m_0+1,n} и P_{m_0-1,n}, получаем

begin{gathered}frac{n!}{m_0!(n-m_0)!}p^{m_0}q^{n-m_0}geqslantfrac{n!}{(m_0+1)!(n-m_0-1)!}p^{m_0+1}q^{n-m_0-1}\\frac{n!}{m_0!(n-m_0)!}p^{m_0}q^{n-m_0}geqslantfrac{n!}{(m_0-1)!(n-m_0+1)!}p^{m_0-1}q^{n-m_0+1}end{gathered}

Решая эти неравенства относительно m_0, получаем

m_0geqslant{np-q},quad m_0leqslant{np+p}

Объединяя последние неравенства, получаем двойное неравенство, которое используют для определения наивероятнейшего числа:

np-qleqslant{m_0}leqslant{np+p}.

(3.4)

Так как длина интервала, определяемого неравенством (3.4), равна единице, т. е.

(np+p)-(np-q)=p+q=1,

и событие может произойти в n испытаниях только целое число раз, то следует иметь в виду, что:

1) если np-q — целое число, то существуют два значения наивероятнейшего числа, а именно: m_0=np-q и m'_0=np-q+1=np+p;

2) если np-q — дробное число, то существует одно наивероятнейшее число, а именно: единственное целое, заключенное между дробными числами, полученными из неравенства (3.4);

3) если np — целое число, то существует одно наивероятнейшее число, а именно: m_0=np.

При больших значениях n пользоваться формулой (3.3) для расчета вероятности, соответствующей наивероятнейшему числу, неудобно. Если в равенство (3.3) подставить формулу Стирлинга

n!approx{n^ne^{-n}sqrt{2pi{n}}},

справедливую для достаточно больших n, и принять наивероятнейшее число m_0=np, то получим формулу для приближенного вычисления вероятности, соответствующей наивероятнейшему числу:

P_{m_0,n}approxfrac{n^ne^{-n}sqrt{2pi{n}},p^{np}q^{nq}}{(np)^{np}e^{-np}sqrt{2pi{np}},(nq)^{nq}e^{-nq}sqrt{2pi{nq}}}=frac{1}{sqrt{2pi{npq}}}=frac{1}{sqrt{2pi}sqrt{npq}}.

(3.5)

Пример 2. Известно, что frac{1}{15} часть продукции, поставляемой заводом на торговую базу, не удовлетворяет всем требованиям стандарта. На базу была завезена партия изделий в количестве 250 шт. Найти наивероятнейшее число изделий, удовлетворяющих требованиям стандарта, и вычислить вероятность того, что в этой партии окажется наивероятнейшее число изделий.

Решение. По условию n=250,,q=frac{1}{15},,p=1-frac{1}{15}=frac{14}{15}. Согласно неравенству (3.4) имеем

250cdotfrac{14}{15}-frac{1}{15}leqslant{m_0}leqslant250cdotfrac{14}{15}+frac{14}{15}

откуда 233,!26leqslant{m_0}leqslant234,!26. Следовательно, наивероятнейшее число изделий, удовлетворяющих требованиям стандарта, в партии из 250 шт. равно 234. Подставляя данные в формулу (3.5), вычисляем вероятность наличия в партии наивероятнейшего числа изделий:

P_{234,250}approxfrac{1}{sqrt{2picdot250cdotfrac{14}{15}cdotfrac{1}{15}}}approx0,!101

Задача

Всхожестьсемян некоторого растения составляет 70%. Какова вероятность того, что из 10посеянных семян взойдут: 8, по крайней мере 8; не менее 8?

Если вам сейчас не требуется платная помощь, но может потребоваться в дальнейшем, то, чтобы не потерять контакт, вступайте в группу ВК.

Решение

Воспользуемсяформулой Бернулли:

100task.ru

В нашемслучае 100task.ru

Пустьсобытие 100task.ru – из 10 семян взойдут 8:

100task.ru

Пустьсобытие 100task.ru – взойдет по крайней мере 8 (это значит 8, 9или 10)

100task.ru

100task.ru

Пустьсобытие 100task.ru – взойдет не менее 8 (это значит 8,9 или 10)

100task.ru

Ответ: P(A)=0.2335;P(B)=0.3828;  P(C)=0.3828

Если вам сейчас не требуется платная помощь, но может потребоваться в дальнейшем, то, чтобы не потерять контакт, вступайте в группу ВК.

На цену сильно влияет срочность решения (от суток до нескольких часов). Онлайн-помощь на экзамене/зачете (срок решения 1,5 часа и меньше) осуществляется по предварительной записи.

Заявку можно оставить прямо в чате, предварительно сообщив необходимые вам сроки решения и скинув условие задач.

Формула Бернулли: примеры решения задач

Пример 1. Найти вероятность того, что среди взятых случайно пяти деталей две стандартные, если вероятность того, что каждая деталь окажется стандартной, равна 0,9.

Решение. Вероятность события А, состоящего в том, что взятая случайно деталь стандартна, есть p=0,9, а вероятность того, что она нестандартна, есть q=1–p=0,1. Обозначенное в условии задачи событие (обозначим его через В) наступит, если, например, первые две детали окажутся стандартными, а следующие три – нестандартными. Но событие В также наступит, если первая и третья детали окажутся стандартными, а остальные – нестандартными, или если вторая и пятая детали будут стандартными, а остальные – нестандартными. Имеются и другие возможности наступления события В. Любая из них характеризуется тем, что из пяти взятых деталей две, занимающие любые места из пяти, окажутся стандартными. Следовательно, общее число различных возможностей наступления события В равно числу возможностей размещения на пяти местах двух стандартных деталей, т.е. равно числу сочетаний из пяти элементов по два, а .

Вероятность каждой возможности по теореме умножения вероятностей равна произведению пяти множителей, из которых два, соответствующие появлению стандартных деталей, равны 0,9, а остальные три, соответствующие появлению нестандартных деталей, равны 0,1, т.е. эта вероятность составляет . Так как указанные десять возможностей являются несовместимыми событиями, по теореме сложения вероятность события В, которую обозначим вычисление вероятности по формуле бернулли пример

Пример 2. Вероятность того, что станок в течение часа потребует внимания рабочего, равна 0,6. Предполагая, что неполадки на станках независимы, найти вероятность того, что в течение часа внимания рабочего потребует какой-либо один станок из четырёх обслуживаемых им.

Решение. Используя формулу Бернулли при n=4, m=1, p=0,6 и q=1–p=0,4, получим

вычисление вероятности по формуле бернулли пример                 

Пример 3. Для нормальной работы автобазы на линии должно быть не менее восьми автомашин, а их имеется десять. Вероятность невыхода каждой автомашины на линию равна 0,1. Найти вероятность нормальной работы автобазы в ближайший день.

Решение. Автобаза будет работать нормально (событие F), если на линию выйдут или восемь (событие А), или девять (событие В), или все десять автомашин событие (событие C). По теореме сложения вероятностей,

.

Каждое слагаемое находим по формуле Бернулли. Здесь n=10, m=8;&nbsp9; 10, а p=1-0,1=0,9, так как p должно означать вероятность выхода автомашины на линию; тогда q=0,1. В результате получим

Пример 4. Пусть вероятность того, что покупателю необходима мужская обувь 41-го размера, равна 0,25. Найти вероятность того, что из шести покупателей по крайней мере двум необходима обувь 41-го размера.

Решение. Обозначенное в условии задачи событие (обозначим его через С) состоит в том, что из шести покупателей двум, трём, четырём, пяти или шести необходима обувь 41-го размера. Применив теорему сложения вероятностей, а затем формулу Бернулли, получим ответ. Однако задача решается проще, если сначала искать вероятность не требуемого в условии задачи, а противоположного ему события . Оно состоит в том, что менее чем двум покупателям необходима обувь 41-го размера, то есть или ни одному покупателю (событие А), или только одному (событие В). Таким образом,

.

По формуле Бернулли при n=6, p=0,25, q=0,75 и m=0; 1 получим

(при подсчёте следует иметь в виду, что ). Тогда вероятность события С найдётся как вероятность события, противоположного найденному:

.

200x200_03.png

Локальная теорема Лапласа

Пользоваться формулой Бернулли при больших значениях n очень трудно. Например, если n=50,,m=30,,p=0,!1, то для отыскания вероятности P_{30,50} надо вычислить значение выражения

P_{30,50}=frac{50!}{30!cdot20!}cdot(0,!1)^{30}cdot(0,!9)^{20}

Естественно, возникает вопрос: нельзя ли вычислить интересующую вероятность, не используя формулу Бернулли? Оказывается, можно. Локальная теорема Лапласа дает асимптотическую формулу, которая позволяет приближенно найти вероятность появления событий ровно m раз в n испытаниях, если число испытаний достаточно велико.

Теорема 3.1. Если вероятность p появления события A в каждом испытании постоянна и отлична от нуля и единицы, то вероятность P_{m,n} того, что событие A появится в n испытаниях ровно m раз, приближенно равна (тем точнее, чем больше n) значению функции

y=frac{1}{sqrt{npq}}frac{e^{-x^2/2}}{sqrt{2pi}}=frac{varphi(x)}{sqrt{npq}}

при

x=frac{m-np}{sqrt{npq}}

.

Существуют таблицы, которые содержат значения функции varphi(x)=frac{1}{sqrt{2pi}},e^{-x^{2}/2}, соответствующие положительным значениям аргумента x. Для отрицательных значений аргумента используют те же таблицы, так как функция varphi(x) четна, т. е. varphi(-x)=varphi(x).

Итак, приближенно вероятность того, что событие A появится в n испытаниях ровно m раз,

P_{m,n}approxfrac{1}{sqrt{npq}},varphi(x),

где

x=frac{m-np}{sqrt{npq}}

.

Пример 3. Найти вероятность того, что событие A наступит ровно 80 раз в 400 испытаниях, если вероятность появления события A в каждом испытании равна 0,2.

Решение. По условию n=400,,m=80,,p=0,!2,,q=0,!8. Воспользуемся асимптотической, формулой Лапласа:

P_{80,400}approxfrac{1}{sqrt{400cdot0,!2cdot0,!8}},varphi(x)=frac{1}{8},varphi(x).

Вычислим определяемое данными задачи значение x:

x=frac{m-np}{sqrt{npq}}=frac{80-400cdot0,!2}{8}=0.

По таблице прил, 1 находим varphi(0)=0,!3989. Искомая вероятность

P_{80,100}=frac{1}{8}cdot0,!3989=0,!04986.

Формула Бернулли приводит примерно к такому же результату (выкладки ввиду их громоздкости опущены):

P_{80,100}=0,!0498.

Формула Пуассона: решенные задачи

Задача 4. С базы в магазин отправлено 4000 тщательно упакованных доброкачественных изделий. Вероятность того, что изделие повредится в пути, равна 0.0005. Найти вероятность того, что из 4000 изделий в магазин прибудут 3 испорченных изделия.

Задача 8. В банк отправлено 4000 пакетов денежных знаков. Вероятность того, что пакет содержит недостаточное или избыточное число денежных знаков, равна 0,0001. Найти вероятность того, что при проверке будет обнаружено:
а) три ошибочно укомплектованных пакета;
б) не более трех пакетов.

Мы отлично умеем решать задачи по теории вероятностей

Применение интегральной теоремы Лапласа

Если число m (число появлений события A при n независимых испытаниях) будет изменяться от m_1 до m_2, то дробь frac{m-np}{sqrt{npq}} будет изменяться от frac{m_1-np}{sqrt{npq}}=x' до frac{m_2-np}{sqrt{npq}}=x''. Следовательно, интегральную теорему Лапласа можно записать и так:

Pleft{x'leqslantfrac{m-np}{sqrt{npq}}leqslant{x''}right}=frac{1}{sqrt{2pi}}intlimits_{x'}^{x''}e^{-x^2/2},dx.

(3.6)

Поставим задачу найти вероятность того, что отклонение относительной частоты frac{m}{n} от постоянной вероятности p по абсолютной величине не превышает заданного числа varepsilon&gt;0. Другими словами, найдем вероятность осуществления неравенства left|frac{m}{n}-pright|leqslantvarepsilon, что то же самое, -varepsilonleqslantfrac{m}{n}-pleqslantvarepsilon. Эту вероятность будем обозначать так: Pleft{left|frac{m}{n}-pright|leqslantvarepsilonright}. С учетом формулы (3.6) для данной вероятности получаем

Pleft{left|frac{m}{n}-pright|leqslantvarepsilonright}approx2Phileft(varepsilon,sqrt{frac{n}{pq}}right).

(3.7)

Пример 5. Вероятность того, что деталь нестандартна, p=0,!1. Найти вероятность того, что среди случайно отобранных 400 деталей относительная частота появления нестандартных деталей отклонится от вероятности p=0,!1 по абсолютной величине не более чем на 0,03.

Решение. По условию n=400,,p=0,!1,,q=0,!9,,varepsilon=0,!03. Требуется найти вероятность Pleft{left|frac{m}{400}-0,!1right|leqslant0,!03right}. Используя формулу (3.7), получаем

Pleft{left|frac{m}{400}-0,!1right|leqslant0,!03right}approx2Phileft(0,!03sqrt{frac{400}{0,!1cdot0,!9}}right)=2Phi(2)

По таблице прил. 2 находим Phi(2)=0,!4772, следовательно, 2Phi(2)=0,!9544. Итак, искомая вероятность приближенно равна 0,9544. Смысл полученного результата таков: если взять достаточно большое число проб по 400 деталей в каждой, то примерно в 95,44% этих проб отклонение относительной частоты от постоянной вероятности p=0,!1 по абсолютной величине не превысит 0,03.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...