Проверка гипотезы о нормальном распределении по критерию Пирсона. Теоретические частоты нормального распределения. Решение задач и контрольных работ по статистике онлайн

Проверка гипотезы о нормальном распределении по критерию Пирсона – рассматривается проверка гипотезы о распределении генеральной совокупности по нормальному закону. На примере решения задачи вычислены теоретические частоты нормального распределения и осуществлена проверка гипотезы о нормальном распределении СВ с помощью критерия Пирсона. Решение задач и контрольных работ по статистике онлайн

Содержание

Примеры решений на проверку гипотез онлайн

Критерий Пирсона, нормальное распределение

Пример 1. Используя критерий Пирсона, при уровне значимости 0,05 проверить, согласуется ли гипотеза о нормальном распределении генеральной совокупности X по результатам выборки:
X 0,3 0,5 0,7 0,9 1,1 1,3 1,5 1,7 1,9 2,1 2,3
N 7 9 28 27 30 26 21 25 22 9 5

Пример 2. Были исследованы 200 готовых деталей на отклонения истинного размера от расчетного. Сгруппированные данные приведены в следующей таблице:
По данному статистическому ряду построить гистограмму. По виду гистограммы выдвинуть гипотезу о виде закона распределения (например, предположить, что исследуемая величина имеет нормальный закон распределения). Подобрать параметры закона распределения (равные их оценкам на основе опытных данных). На том же графике построить функцию плотности вероятности, соответствующую выдвинутой гипотезе. С помощью критерия согласия проверить, согласуется ли гипотеза с опытными данными. Уровень значимости взять, например, равным 0,05.

Критерий Пирсона, распределение по закону Пуассона

Пример 3. Отдел технического контроля проверил n партий однотипных изделий и установил, что число нестандартных изделий в одной партии имеет эмпирическое распределение, приведенное в таблице, в одной строке которой указано количество xi нестандартных изделий в одной партии, а в другой строке – количество ni партий, содержащих xi нестандартных изделий. Требуется при уровне значимости α0,05 проверить гипотезу о том, что случайная величина X (число нестандартных изделий в одной партии) распределена по закону Пуассона.

Пример 4. В результате обследования 150 человек были получены данные о количестве приобретаемых за месяц цветных иллюстрированных журналов. Соответствует ли данное распределение закону редких событий Пуассона?

Критерий Пирсона, распределение по показательному закону

Пример 5. В итоге испытаний 1000 элементов на время безотказной работы (час.) получено распределение, приведенное в таблице. Требуется при уровне значимости проверить гипотезу о том, что данные в генеральной совокупности распределены по показательному закону.
Время безотказной работы 0-10 10-20 20-30 30-40 40-50 50-60 60-70
Число отказавших элементов 365 245 150 100 70 45 25

Критерий Пирсона, распределение по равномерному закону

Пример 6. В некоторой местности в течение 300 суток регистрировалась среднесуточная температура воздуха. В итоге наблюдений было получено эмпирическое распределение, приведенное в таблице 40 (в первом столбце указан интервал температуры в градусах, во втором столбце – частота $n_i$, т.е. количество дней, среднесуточная температура которых принадлежит этому интервалу).
Требуется при уровне значимости 0,05 проверить гипотезу о том, что среднесуточная температура воздуха распределена равномерно.

Критерий Колмогорова

Пример 7. Имеются выборочные данные о числе сделок, заключенных фирмой с частными лицами в течение месяца:
– число заключенных сделок 0-10 10-20 20-30 30-40 40-50
– число частных лиц 23 24 11 9 3
Проверить при уровне значимости 0,05, используя критерий согласия Колмогорова, гипотезу о нормальном законе распределения.

Пример 8. В течение месяца выборочно осуществлялась проверка торговых точек города по продаже овощей. Результаты двух проверок по недовесам покупателям одного вида овощей приведены в таблице:Можно ли считать при уровне значимости 0,05, что недовесы овощей являются устойчивым и закономерным процессом при продаже овощей в данном городе (т.е. описываются одной и той же функцией распределения)?

Критерий Вилкоксона

Пример 9. Имеется выборка прибыли коммерческой фирмы за 14 недель до (хi) и после (yi) проведения новой экономической политики. На уровне значимости 0,05 по критерию Вилкоксона проверить гипотезу о том, что введение новой экономической политики в среднем привело к увеличению производительности.

Критерий $chi^2$ для двух выборок

Пример 10. Используя критерий «хи-квадрат» при уровне значимости 0,05, проверить, существует ли зависимость уровня интеллектуального развития учеников от типа школы по результатам обследования 100 сельских и 100 городских школьников:
Тип школы Уровень интеллектуального развития
низкий нормальный высокий
Городская 25 50 25
Сельская 52 41 7

Нужно решить задачи на проверку статистических гипотез?

Статистические гипотезы и области их применения

Статистическая гипотеза – это предположение о каких-либо характеристиках случайной величины. Например: существенно ли изменение числа AI-стартапов в Европе в два разных года и т. д.

Проверка статистических гипотез является важнейшим классом задач математической статистики. С помощью данного инструмента можно подтвердить или отвергнуть предположение о свойствах случайной величины путем применения методов статистического анализа для элементов выборки. Если в предыдущем предложении какие-либо термины являются не совсем понятными, ниже можно найти пояснение на простом языке.

Случайная величина – это величина, которая в зависимости от той или иной ситуации принимает конкретные значения с определенными вероятностями. Примеры: отметка на экзамене; результат игры в кости; количество AI-стартапов по странам Европы. В общем, почти все что угодно!

Генеральная совокупность – совокупность всех объектов для анализа. Например: все AI-стартапы в Европе в 2019-м году.

Выборка – часть данных из генеральной совокупности. Например: официально зарегистрированные AI-стартапы в некоторых странах Европы в 2019-м году.

Статистический анализ – использование различных методов для того, чтобы определить свойства генеральной совокупности по выборке.

Для проверки статистических гипотез зачастую применяются статистические тесты, о которых будет рассказано далее.

Задача

Выборка из генеральной совокупности случайной величины X задана интервальным вариационным рядом.

Требуется:

Даны результаты испытания стойкости 200 удлиненныхсверл диаметра 4 мм (в часах).

Решение

Если не находите примера, аналогичного вашему, если сами не успеваете выполнить работу, если впереди экзамен по предмету и нужна помощь – свяжитесь со мной:

ВКонтакте
WhatsApp
Telegram

Я буду работать с вами, над вашей проблемой, пока она не решится.

Построение гистограммы и полигона относительных частот

Построим гистограммуотносительных частот – ступенчатую фигуру, состоящую из прямоугольников,основаниями которых служат интервалы длиной 100task.ru,а высоты равны 100task.ru.  На том же графике строим полигон – ломанную,соединяющую точки 100task.ru

Полигон и гистограмма относительных частот

100task.ru

По виду полигона и гистограммы можнопредположить, что случайная величина распределена по нормальному закону.

Расчет среднего, дисперсии, исправленного среднего квадратического отклонения

Вычислим характеристикираспределения. Для этого составим расчетную таблицу. В качестве величины хвозьмем середины интервалов.

Выборочная средняя:

100task.ru

Вычислим исправленную выборочную дисперсию.

Средняя квадратов:

100task.ru

Исправленная выборочная дисперсия:

100task.ru

Исправленное среднее квадратическоеотклонение:

100task.ru

Плотность вероятности и функция распределения

Плотность вероятности случайной величины  100task.ru, распределенной  по нормальномузакону, имеет вид:

100task.ru

Теоретическая плотностьвероятности:

100task.ru

Функция распределения для СВ 100task.ru,распределенной по нормальному закону, записывается следующим образом

100task.ru

Теоретическая функцияраспределения:

100task.ru

Вычисление теоретических частот

Вычислим теоретическиечастоты. Для этого пронормируем 100task.ru, то есть перейдем к случайной величине 100task.ru, которую можно вычислить по формуле:

100task.ru

Вероятность попадания всоответствующий интервал:

100task.ru, где 100task.ru– функция Лапласа

Теоретические частоты нормального закона распределения:

100task.ru, где 100task.ru -объем выборки

Это расчет теоретических частот нормального распределения. На другой странице раздела есть похожая задача на вычисление теоретических частот и проверку гипотезы о распределении по закону Пуассона.

Составим расчетную таблицу:

Проверка гипотезы о нормальном распределении генеральной совокупности по критерию Пирсона

Проверим степень согласияэмпирического и теоретического распределения по критерию Пирсона:

Из расчетной таблицы 100task.ru

Уровень значимости 100task.ru

Число степеней свободы 100task.ru

По таблице критических точек распределения Пирсона (хи-квадрат): 100task.ru

100task.ru

Нет оснований отвергнуть гипотезу о распределении случайной величины по нормальному закону.

Проверка гипотезы по критерию Хи квадрат Пирсона 

Вот мы и подошли к проверке гипотез по методу хи-квадрат. В целом техника остается прежней. Выдвигается нулевая гипотеза о том, что наблюдаемые частоты соответствуют ожидаемым (т.е. между ними нет разницы, т.к. они взяты из той же генеральной совокупности). Если этот так, то разброс будет относительно небольшим, в пределах случайных колебаний. Меру разброса определяют по статистике Хи-квадрат. Далее либо полученную статистику сравнивают с критическим значением (для соответствующего уровня значимости и степеней свободы), либо, что более правильно, рассчитывают наблюдаемый p-value, т.е. вероятность получить такое или еще больше значение статистики при справедливости нулевой гипотезы.

Схема проверки гипотезы по методу хи-квадрат

Т.к. нас интересует согласие частот, то отклонение гипотезы произойдет, когда статистика окажется больше критического уровня. Т.е. критерий является односторонним. Однако иногда (иногда) требуется проверить левостороннюю гипотезу. Например, когда эмпирические данные уж оооочень сильно похожи на теоретические. Тогда критерий может попасть в маловероятную область, но уже слева. Дело в том, что в естественных условиях, маловероятно получить частоты, практически совпадающие с теоретическими. Всегда есть некоторая случайность, которая дает погрешность. А вот если такой погрешности нет, то, возможно, данные были сфальсифицированы. Но все же обычно проверяют правостороннюю гипотезу.

Вернемся к задаче с игральной костью. Рассчитаем по имеющимся данным значение статистики критерия хи-квадрат.

Расчет критерия хи-квадрат

Теперь найдем критическое значение при 5-ти степенях свободы (k) и уровне значимости 0,05 (α) по таблице критических значений распределения хи квадрат.

Табличное значение критерия хи-квадрат

То есть квантиль 0,05 хи квадрат распределения (правый хвост) с 5-ю степенями свободы χ20,05; 5 = 11,1.

Сравним фактическое и табличное значение. 3,4 (χ2) < 11,1 (χ20,05; 5). Расчетный значение оказалось меньшим, значит гипотеза о равенстве (согласии) частот не отклоняется. На рисунке ситуация выглядит вот так.

Проверка гипотезы на диаграмме распределения хи-квадрат

Если бы расчетное значение попало в критическую область, то нулевая гипотеза была бы отклонена.

Более правильным будет рассчитать еще и p-value. Для этого нужно в таблице найти ближайшее значение для заданного количества степеней свободы и посмотреть соответствующий ему уровень значимости. Но это прошлый век. Воспользуемся ЭВМ, в частности MS Excel. В эксель есть несколько функций, связанных с хи-квадрат.

Функции Excel, связанные с критерием хи-квадрат

Ниже их краткое описание.

ХИ2.ОБР – критическое значение Хи-квадрат при заданной вероятности слева (как в статистических таблицах)

ХИ2.ОБР.ПХ – критическое значение при заданной вероятности справа. Функция по сути дублирует предыдущую. Но здесь можно сразу указывать уровень α, а не вычитать его из 1. Это более удобно, т.к. в большинстве случаев нужен именно правый хвост распределения.

ХИ2.РАСП – p-value слева (можно рассчитать плотность).

ХИ2.РАСП.ПХ – p-value справа.

ХИ2.ТЕСТ – по двум диапазонам частот сразу проводит тест хи-квадрат. Количество степеней свободы берется на одну меньше, чем количество частот в столбце (так и должно быть), возвращая значение p-value.

Давайте пока рассчитаем для нашего эксперимента критическое (табличное) значение для 5-ти степеней свободы и альфа 0,05. Формула Excel будет выглядеть так:

=ХИ2.ОБР(0,95;5)

Или так

=ХИ2.ОБР.ПХ(0,05;5)

Результат будет одинаковым – 11,0705. Именно это значение мы видим в таблице (округленное до 1 знака после запятой).

Рассчитаем, наконец, p-value для 5-ти степеней свободы критерия χ2 = 3,4. Нужна вероятность справа, поэтому берем функцию с добавкой ПХ (правый хвост)

=ХИ2.РАСП.ПХ(3,4;5) = 0,63857

Значит, при 5-ти степенях свободы вероятность получить значение критерия χ2 = 3,4 и больше равна почти 64%. Естественно, гипотеза не отклоняется (p-value больше 5%), частоты очень хорошо согласуются.

А теперь проверим гипотезу о согласии частот с помощью теста хи квадрат и функции Excel ХИ2.ТЕСТ.

Никаких таблиц, никаких громоздких расчетов. Указав в качестве аргументов функции столбцы с наблюдаемыми и ожидаемыми частотами, сразу получаем p-value. Красота.

Представим теперь, что вы играете в кости с подозрительным типом. Распределение очков от 1 до 5 остается прежним, но он выкидывает 26 шестерок (количество всех бросков становится 78).

Отклонение гипотезы о согласованности частот

p-value в этом случае оказывается 0,003, что гораздо меньше чем, 0,05. Есть серьезные основания сомневаться в правильности игральной кости. Вот, как выглядит эта вероятность на диаграмме распределения хи-квадрат.

Отклонение нулевой гипотезы

Статистика критерия хи-квадрат здесь получается 17,8, что, естественно, больше табличного (11,1).

Надеюсь, мне удалось объяснить, что такое критерий согласия χ2 (хи-квадрат) Пирсона и как с его помощью проверяются статистические гипотезы.

Напоследок еще раз о важном условии! Критерий хи-квадрат исправно работает только в случае, когда количество всех частот превышает 50, а минимальное ожидаемое значение для каждой группы не меньше 5. Если в какой-либо категории ожидаемая частота менее 5, но при этом сумма всех частот превышает 50, то такую категорию объединяют с ближайшей, чтобы их общая частота превысила 5. Если это сделать невозможно, или сумма частот меньше 50, то следует использовать более точные методы проверки гипотез. О них поговорим в другой раз.

Ниже находится видео ролик о том, как в Excel проверить гипотезу с помощью критерия хи-квадрат.

Скачать файл с примером.

Поделиться в социальных сетях:

Полезные ссылки

  • Критерий согласия Пирсона Хи-квадрат
  • Критерий согласия для распределения Пуассона и нормального
  • Решение задач на заказ
  • Ссылки на учебники
  • Решенные контрольные

Алгоритм проверки статистической гипотезы

В обобщенном виде алгоритм выглядит таким образом:

  1. Формулировка основной (H0) и альтернативной (H1) гипотез

  2. Выбор уровня значимости

  3. Выбор статистического критерия

  4. Определения правила принятия решения

  5. Итоговое принятие решения на основе исходной выборки данных

Данные шаги являются унифицированными и схему можно использовать почти во всех случаях. Далее подробнее рассмотрим пример работы данного алгоритма на конкретных данных.

Решебник по математической статистике

Ищете решенное задание на проверку статистических гипотез? Попробуйте тут:

Разнообразие статистических критериев

Как мы увидели на примере, важным шагом в проверке статистической гипотезы является выбор критерия. В примере выше я использовала лишь два статистических критерия, но по факту их гораздо больше, так сказать, на все случаи жизни. Данные критерии важно знать и четко нужно осознавать, когда и какой можно применить. Многие из них направлены на сравнение центров распределений случайных величин, например, сравнение средних, медиан, равенство параметра распределения какому-либо числу и т. д. В основном они делятся на параметрические (знаем закон распределения случайной величины) и непараметрические.

Для вашего удобства внизу (рис. 3) приведена таблица с основными, с моей точки зрения, критериями сравнения центров распределения и их классификацией. Надеюсь, она будет вам полезна, ее можно дополнять и расширять по вашему желанию.

Рисунок 3 - классификация статистических критериевРисунок 3 – классификация статистических критериев

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...