Прогноз в Excel (формула, примеры) | Как использовать функцию прогноза?

Ранее мы уже разобрали, что такое временной ряд и функция тренда. Теперь разберемся с терминологией и остановимся на одной из моделей временного ряда.

Пример прогнозирования продаж в Excel

Рассчитаем прогноз по продажам с учетом роста и сезонности. Проанализируем продажи за 12 месяцев предыдущего года и построим прогноз на 3 месяца следующего года с помощью линейного тренда. Каждый месяц это для нашего прогноза 1 период (y).

Уравнение линейного тренда:

y = bx + a

  • y — объемы продаж;
  • x — номер периода;
  • a — точка пересечения с осью y на графике (минимальный порог);
  • b — увеличение последующих значений временного ряда.

Допустим у нас имеются следующие статистические данные по продажам за прошлый год.

Статистические данные для прогноза.

  1. Рассчитаем значение линейного тренда. Определим коэффициенты уравнения y = bx + a. В ячейке D15 Используем функцию ЛИНЕЙН:Функция ЛИНЕЙН.
  2. Выделяем ячейку с формулой D15 и соседнюю, правую, ячейку E15 так чтобы активной оставалась D15. Нажимаем кнопку F2. Затем Ctrl + Shift + Enter (чтобы ввести массив функций для обеих ячеек). Таким образом получаем сразу 2 значения коефициентов для (a) и (b).Значения коэффициентов.
  3. Рассчитаем для каждого периода у-значение линейного тренда. Для этого в известное уравнение подставим рассчитанные коэффициенты (х – номер периода).Значения тренда.
  4. Чтобы определить коэффициенты сезонности, сначала найдем отклонение фактических данных от значений тренда («продажи за год» / «линейный тренд»).Отклонения от значения.
  5. Рассчитаем средние продажи за год. С помощью формулы СРЗНАЧ.Фунция СРЗНАЧ.
  6. Определим индекс сезонности для каждого месяца (отношение продаж месяца к средней величине). Фактически нужно каждый объем продаж за месяц разделить на средний объем продаж за год.Индекс сезонности по месяцам.
  7. В ячейке H2 найдем общий индекс сезонности через функцию: =СРЗНАЧ(G2:G13).
  8. Спрогнозируем продажи, учитывая рост объема и сезонность. На 3 месяца вперед. Продлеваем номера периодов временного ряда на 3 значения в столбце I:Периоды для пронгоза.
  9. Рассчитаем значения тренда для будущих периодов: изменим в уравнении линейной функции значение х. Для этого можно просто скопировать формулу из D2 в J2, J3, J4.
  10. На основе полученных данных составляем прогноз по продажам на следующие 3 месяца (следующего года) с учетом сезонности:

Прогноз с учетом сезонности.

Общая картина составленного прогноза выглядит следующим образом:

Прогноз по линейному тренду.

График прогноза продаж:

График прогноза продаж.

График сезонности:

График сезонности.

Алгоритм анализа временного ряда и прогнозирования

Алгоритм анализа временного ряда для прогнозирования продаж в Excel можно построить в три шага:

  1. Выделяем трендовую составляющую, используя функцию регрессии.
  2. Определяем сезонную составляющую в виде коэффициентов.
  3. Вычисляем прогнозные значения на определенный период.

Нужно понимать, что точный прогноз возможен только при индивидуализации модели прогнозирования. Ведь разные временные ряды имеют разные характеристики.

  • бланк прогноза деятельности предприятия

Чтобы посмотреть общую картину с графиками выше описанного прогноза рекомендуем скачать данный пример:

Процедура прогнозирования

Целью любого прогнозирования является выявление текущей тенденции, и определение предполагаемого результата в отношении изучаемого объекта на определенный момент времени в будущем.

Способ 1: линия тренда

Одним из самых популярных видов графического прогнозирования в Экселе является экстраполяция выполненная построением линии тренда.

Попробуем предсказать сумму прибыли предприятия через 3 года на основе данных по этому показателю за предыдущие 12 лет.

  1. Строим график зависимости на основе табличных данных, состоящих из аргументов и значений функции. Для этого выделяем табличную область, а затем, находясь во вкладке «Вставка», кликаем по значку нужного вида диаграммы, который находится в блоке «Диаграммы». Затем выбираем подходящий для конкретной ситуации тип. Лучше всего выбрать точечную диаграмму. Можно выбрать и другой вид, но тогда, чтобы данные отображались корректно, придется выполнить редактирование, в частности убрать линию аргумента и выбрать другую шкалу горизонтальной оси.

Построение графика в Microsoft Excel

Теперь нам нужно построить линию тренда. Делаем щелчок правой кнопкой мыши по любой из точек диаграммы. В активировавшемся контекстном меню останавливаем выбор на пункте «Добавить линию тренда».

Добавление линии тренда в Microsoft Excel

Открывается окно форматирования линии тренда. В нем можно выбрать один из шести видов аппроксимации:

  • Линейная;
  • Логарифмическая;
  • Экспоненциальная;
  • Степенная;
  • Полиномиальная;
  • Линейная фильтрация.

Давайте для начала выберем линейную аппроксимацию.

В блоке настроек «Прогноз» в поле «Вперед на» устанавливаем число «3,0», так как нам нужно составить прогноз на три года вперед. Кроме того, можно установить галочки около настроек «Показывать уравнение на диаграмме» и «Поместить на диаграмме величину достоверности аппроксимации (R^2)». Последний показатель отображает качество линии тренда. После того, как настройки произведены, жмем на кнопку «Закрыть».

Параметры линии тренда в Microsoft Excel

Линия тренда построена и по ней мы можем определить примерную величину прибыли через три года. Как видим, к тому времени она должна перевалить за 4500 тыс. рублей. Коэффициент R2, как уже было сказано выше, отображает качество линии тренда. В нашем случае величина R2 составляет 0,89. Чем выше коэффициент, тем выше достоверность линии. Максимальная величина его может быть равной 1. Принято считать, что при коэффициенте свыше 0,85 линия тренда является достоверной.

Линия тренда построена в Microsoft Excel

Если же вас не устраивает уровень достоверности, то можно вернуться в окно формата линии тренда и выбрать любой другой тип аппроксимации. Можно перепробовать все доступные варианты, чтобы найти наиболее точный.

Выбор другого типа апроксимации в Microsoft Excel

Нужно заметить, что эффективным прогноз с помощью экстраполяции через линию тренда может быть, если период прогнозирования не превышает 30% от анализируемой базы периодов. То есть, при анализе периода в 12 лет мы не можем составить эффективный прогноз более чем на 3-4 года. Но даже в этом случае он будет относительно достоверным, если за это время не будет никаких форс-мажоров или наоборот чрезвычайно благоприятных обстоятельств, которых не было в предыдущих периодах.

Урок: Как построить линию тренда в Excel

Способ 2: оператор ПРЕДСКАЗ

Экстраполяцию для табличных данных можно произвести через стандартную функцию Эксель ПРЕДСКАЗ. Этот аргумент относится к категории статистических инструментов и имеет следующий синтаксис:

=ПРЕДСКАЗ(X;известные_значения_y;известные значения_x)

«X» – это аргумент, значение функции для которого нужно определить. В нашем случае в качестве аргумента будет выступать год, на который следует произвести прогнозирование.

«Известные значения y» — база известных значений функции. В нашем случае в её роли выступает величина прибыли за предыдущие периоды.

«Известные значения x» — это аргументы, которым соответствуют известные значения функции. В их роли у нас выступает нумерация годов, за которые была собрана информация о прибыли предыдущих лет.

Естественно, что в качестве аргумента не обязательно должен выступать временной отрезок. Например, им может являться температура, а значением функции может выступать уровень расширения воды при нагревании.

При вычислении данным способом используется метод линейной регрессии.

Давайте разберем нюансы применения оператора ПРЕДСКАЗ на конкретном примере. Возьмем всю ту же таблицу. Нам нужно будет узнать прогноз прибыли на 2018 год.

  1. Выделяем незаполненную ячейку на листе, куда планируется выводить результат обработки. Жмем на кнопку «Вставить функцию».

Переход в Мастер функций в Microsoft Excel

Открывается Мастер функций. В категории «Статистические» выделяем наименование «ПРЕДСКАЗ», а затем щелкаем по кнопке «OK».

Переход к аргументам функции ПРЕДСКАЗ в Microsoft Excel

Запускается окно аргументов. В поле «X» указываем величину аргумента, к которому нужно отыскать значение функции. В нашем случаем это 2018 год. Поэтому вносим запись «2018». Но лучше указать этот показатель в ячейке на листе, а в поле «X» просто дать ссылку на него. Это позволит в будущем автоматизировать вычисления и при надобности легко изменять год.

В поле «Известные значения y» указываем координаты столбца «Прибыль предприятия». Это можно сделать, установив курсор в поле, а затем, зажав левую кнопку мыши и выделив соответствующий столбец на листе.

Аналогичным образом в поле «Известные значения x» вносим адрес столбца «Год» с данными за прошедший период.

После того, как вся информация внесена, жмем на кнопку «OK».

Аргументы функции ПРЕДСКАЗ в Microsoft Excel

Оператор производит расчет на основании введенных данных и выводит результат на экран. На 2018 год планируется прибыль в районе 4564,7 тыс. рублей. На основе полученной таблицы мы можем построить график при помощи инструментов создания диаграммы, о которых шла речь выше.

Результат функции ПРЕДСКАЗ в Microsoft Excel

Если поменять год в ячейке, которая использовалась для ввода аргумента, то соответственно изменится результат, а также автоматически обновится график. Например, по прогнозам в 2019 году сумма прибыли составит 4637,8 тыс. рублей.

Изменение аргумента функции ПРЕДСКАЗ в Microsoft Excel

Но не стоит забывать, что, как и при построении линии тренда, отрезок времени до прогнозируемого периода не должен превышать 30% от всего срока, за который накапливалась база данных.

Урок: Экстраполяция в Excel

Способ 3: оператор ТЕНДЕНЦИЯ

Для прогнозирования можно использовать ещё одну функцию – ТЕНДЕНЦИЯ. Она также относится к категории статистических операторов. Её синтаксис во многом напоминает синтаксис инструмента ПРЕДСКАЗ и выглядит следующим образом:

=ТЕНДЕНЦИЯ(Известные значения_y;известные значения_x; новые_значения_x;[конст])

Как видим, аргументы «Известные значения y» и «Известные значения x» полностью соответствуют аналогичным элементам оператора ПРЕДСКАЗ, а аргумент «Новые значения x» соответствует аргументу «X» предыдущего инструмента. Кроме того, у ТЕНДЕНЦИЯ имеется дополнительный аргумент «Константа», но он не является обязательным и используется только при наличии постоянных факторов.

Данный оператор наиболее эффективно используется при наличии линейной зависимости функции.

Посмотрим, как этот инструмент будет работать все с тем же массивом данных. Чтобы сравнить полученные результаты, точкой прогнозирования определим 2019 год.

  1. Производим обозначение ячейки для вывода результата и запускаем Мастер функций обычным способом. В категории «Статистические» находим и выделяем наименование «ТЕНДЕНЦИЯ». Жмем на кнопку «OK».

Переход к аргументам функции ТЕНДЕНЦИЯ в Microsoft Excel

Открывается окно аргументов оператора ТЕНДЕНЦИЯ. В поле «Известные значения y» уже описанным выше способом заносим координаты колонки «Прибыль предприятия». В поле «Известные значения x» вводим адрес столбца «Год». В поле «Новые значения x» заносим ссылку на ячейку, где находится номер года, на который нужно указать прогноз. В нашем случае это 2019 год. Поле «Константа» оставляем пустым. Щелкаем по кнопке «OK».

Аргументы функции ТЕНДЕНЦИЯ в Microsoft Excel

Оператор обрабатывает данные и выводит результат на экран. Как видим, сумма прогнозируемой прибыли на 2019 год, рассчитанная методом линейной зависимости, составит, как и при предыдущем методе расчета, 4637,8 тыс. рублей.

Результат функции ТЕНДЕНЦИЯ в Microsoft Excel

Способ 4: оператор РОСТ

Ещё одной функцией, с помощью которой можно производить прогнозирование в Экселе, является оператор РОСТ. Он тоже относится к статистической группе инструментов, но, в отличие от предыдущих, при расчете применяет не метод линейной зависимости, а экспоненциальной. Синтаксис этого инструмента выглядит таким образом:

=РОСТ(Известные значения_y;известные значения_x; новые_значения_x;[конст])

Как видим, аргументы у данной функции в точности повторяют аргументы оператора ТЕНДЕНЦИЯ, так что второй раз на их описании останавливаться не будем, а сразу перейдем к применению этого инструмента на практике.

  1. Выделяем ячейку вывода результата и уже привычным путем вызываем Мастер функций. В списке статистических операторов ищем пункт «РОСТ», выделяем его и щелкаем по кнопке «OK».

Переход к аргументам функции РОСТ в Microsoft Excel

Происходит активация окна аргументов указанной выше функции. Вводим в поля этого окна данные полностью аналогично тому, как мы их вводили в окне аргументов оператора ТЕНДЕНЦИЯ. После того, как информация внесена, жмем на кнопку «OK».

Аргументы функции РОСТ в Microsoft Excel

Результат обработки данных выводится на монитор в указанной ранее ячейке. Как видим, на этот раз результат составляет 4682,1 тыс. рублей. Отличия от результатов обработки данных оператором ТЕНДЕНЦИЯ незначительны, но они имеются. Это связано с тем, что данные инструменты применяют разные методы расчета: метод линейной зависимости и метод экспоненциальной зависимости.

Результат функции РОСТ в Microsoft Excel

Способ 5: оператор ЛИНЕЙН

Оператор ЛИНЕЙН при вычислении использует метод линейного приближения. Его не стоит путать с методом линейной зависимости, используемым инструментом ТЕНДЕНЦИЯ. Его синтаксис имеет такой вид:

=ЛИНЕЙН(Известные значения_y;известные значения_x; новые_значения_x;[конст];[статистика])

Последние два аргумента являются необязательными. С первыми же двумя мы знакомы по предыдущим способам. Но вы, наверное, заметили, что в этой функции отсутствует аргумент, указывающий на новые значения. Дело в том, что данный инструмент определяет только изменение величины выручки за единицу периода, который в нашем случае равен одному году, а вот общий итог нам предстоит подсчитать отдельно, прибавив к последнему фактическому значению прибыли результат вычисления оператора ЛИНЕЙН, умноженный на количество лет.

  1. Производим выделение ячейки, в которой будет производиться вычисление и запускаем Мастер функций. Выделяем наименование «ЛИНЕЙН» в категории «Статистические» и жмем на кнопку «OK».

Переход к аргументам функции ЛИНЕЙН в Microsoft Excel

В поле «Известные значения y», открывшегося окна аргументов, вводим координаты столбца «Прибыль предприятия». В поле «Известные значения x» вносим адрес колонки «Год». Остальные поля оставляем пустыми. Затем жмем на кнопку «OK».

Аргументы функции ЛИНЕЙН в Microsoft Excel

Программа рассчитывает и выводит в выбранную ячейку значение линейного тренда.

Результат функции ЛИНЕЙН в Microsoft Excel

Теперь нам предстоит выяснить величину прогнозируемой прибыли на 2019 год. Устанавливаем знак «=» в любую пустую ячейку на листе. Кликаем по ячейке, в которой содержится фактическая величина прибыли за последний изучаемый год (2016 г.). Ставим знак «+». Далее кликаем по ячейке, в которой содержится рассчитанный ранее линейный тренд. Ставим знак «*». Так как между последним годом изучаемого периода (2016 г.) и годом на который нужно сделать прогноз (2019 г.) лежит срок в три года, то устанавливаем в ячейке число «3». Чтобы произвести расчет кликаем по кнопке Enter.

Итоговый расчет функции ЛИНЕЙН в Microsoft Excel

Как видим, прогнозируемая величина прибыли, рассчитанная методом линейного приближения, в 2019 году составит 4614,9 тыс. рублей.

Способ 6: оператор ЛГРФПРИБЛ

Последний инструмент, который мы рассмотрим, будет ЛГРФПРИБЛ. Этот оператор производит расчеты на основе метода экспоненциального приближения. Его синтаксис имеет следующую структуру:

= ЛГРФПРИБЛ (Известные значения_y;известные значения_x; новые_значения_x;[конст];[статистика])

Как видим, все аргументы полностью повторяют соответствующие элементы предыдущей функции. Алгоритм расчета прогноза немного изменится. Функция рассчитает экспоненциальный тренд, который покажет, во сколько раз поменяется сумма выручки за один период, то есть, за год. Нам нужно будет найти разницу в прибыли между последним фактическим периодом и первым плановым, умножить её на число плановых периодов (3) и прибавить к результату сумму последнего фактического периода.

  1. В списке операторов Мастера функций выделяем наименование «ЛГРФПРИБЛ». Делаем щелчок по кнопке «OK».

Переход к аргументам функции ЛГРФПРИБЛ в Microsoft Excel

Запускается окно аргументов. В нем вносим данные точно так, как это делали, применяя функцию ЛИНЕЙН. Щелкаем по кнопке «OK».

Аргументы функции ЛГРФПРИБЛ в Microsoft Excel

Результат экспоненциального тренда подсчитан и выведен в обозначенную ячейку.

Результат функции ЛГРФПРИБЛ в Microsoft Excel

Ставим знак «=» в пустую ячейку. Открываем скобки и выделяем ячейку, которая содержит значение выручки за последний фактический период. Ставим знак «*» и выделяем ячейку, содержащую экспоненциальный тренд. Ставим знак минус и снова кликаем по элементу, в котором находится величина выручки за последний период. Закрываем скобку и вбиваем символы «*3+» без кавычек. Снова кликаем по той же ячейке, которую выделяли в последний раз. Для проведения расчета жмем на кнопку Enter.

Итоговый расчет функции ЛГРФПРИБЛ в Microsoft Excel

Прогнозируемая сумма прибыли в 2019 году, которая была рассчитана методом экспоненциального приближения, составит 4639,2 тыс. рублей, что опять не сильно отличается от результатов, полученных при вычислении предыдущими способами.

Урок: Другие статистические функции в Excel

Мы выяснили, какими способами можно произвести прогнозирование в программе Эксель. Графическим путем это можно сделать через применение линии тренда, а аналитическим – используя целый ряд встроенных статистических функций. В результате обработки идентичных данных этими операторами может получиться разный итог. Но это не удивительно, так как все они используют разные методы расчета. Если колебание небольшое, то все эти варианты, применимые к конкретному случаю, можно считать относительно достоверными.

ЗакрытьМы рады, что смогли помочь Вам в решении проблемы.
ЗакрытьОпишите, что у вас не получилось.

Наши специалисты постараются ответить максимально быстро.

Помогла ли вам эта статья?

ДА НЕТ

Шаг 1

Следуя нашему алгоритму, мы должны сгладить временной ряд. Воспользуемся методом скользящей средней. Видим, что  в каждом году есть большие пики (май-июнь 2016 и апрель 2017), поэтому возьмем период сглаживания пошире, например, месячную динамику, т.е. 12 месяцев.

Удобнее брать период сглаживания в виде нечетного числа, тогда формула для расчета уровней сглаженного ряда:

yi — фактическое значение i-го уровня ряда,

yt — значение скользящей средней в момент времени t,

2p+1 — длина интервала сглаживания.

Но так как мы решили использовать месячную динамику в виде четного числа 12, то данная формула нам не подойдет и мы воспользуемся этой:

Иными словами, мы учитываем половины от крайних уровней ряда в диапазоне, в остальном формула не претерпела больше никаких изменений. Вот ее точный вид для нашей задачи:

Сглаживаем наши уровни ряда и растягиваем формулу вниз:

Сглаживание уровней ряда

Сразу можем построить график из известных значений уровня продаж и их сглаженной. Выведем ее уравнение и значение коэффициента детерминации R^2:

Сглаженные уровни ряда

В качестве сглаженной я выбрала полином третьей степени, так как он лучше всего описывал уровни временного ряда и имел наибольший R^2.

Отображение функции тренда

Создание прогноза

  1. На листе введите два ряда данных, которые соответствуют друг другу:

    • ряд значений даты или времени для временной шкалы;

    • ряд соответствующих значений показателя.

      Эти значения будут предсказаны для дат в будущем.

    Примечание: Для временной шкалы требуются одинаковые интервалы между точками данных. Например, это могут быть месячные интервалы со значениями на первое число каждого месяца, годичные или числовые интервалы. Если на временной шкале не хватает до 30 % точек данных или есть несколько чисел с одной и той же меткой времени, это нормально. Прогноз все равно будет точным. Но для повышения точности прогноза желательно перед его созданием обобщить данные.

  2. Выделите оба ряда данных.

    Совет: Если выделить ячейку в одном из рядов, Excel автоматически выделит остальные данные.

  3. На вкладке Данные в группе Прогноз нажмите кнопку Лист прогноза.

    Кнопка "Лист прогнозов" на вкладке "Данные"

  4. В окне Создание прогноза выберите график или гограмму для визуального представления прогноза.

    Снимок диалогового окна "Создание листа прогноза" со свернутыми параметрами

  5. В поле Завершение прогноза выберите дату окончания, а затем нажмите кнопку Создать.

    В Excel будет создан новый лист с таблицей, содержащей статистические и предсказанные значения, и диаграммой, на которой они отражены.

    Этот лист будет находиться слева от листа, на котором вы ввели ряды данных (то есть перед ним).

Настройка прогноза

Если вы хотите изменить дополнительные параметры прогноза, нажмите кнопку Параметры.

Сведения о каждом из вариантов можно найти в таблице ниже.

Параметры прогноза

Описание

Начало прогноза

Выберите дату, с которой должен начинаться прогноз. При выборе даты начала, которая наступает раньше, чем заканчиваются статистические данные, для построения прогноза используются только данные, предшествующие ей (это называется “ретроспективным прогнозированием”).

Советы: 

  • Если вы начинаете прогноз перед последней точкой, вы сможете получить оценку точности прогноза, так как сможете сравнить прогнозируемый ряд с фактическими данными. Но если начать прогнозирование со слишком ранней даты, построенный прогноз может отличаться от созданного на основе всех статистических данных. При использовании всех статистических данных прогноз будет более точным.

  • Если в ваших данных прослеживаются сезонные тенденции, то рекомендуется начинать прогнозирование с даты, предшествующей последней точке статистических данных.

Доверительный интервал

Установите или снимите флажок Доверительный интервал, чтобы показать или скрыть его. Доверительный интервал — это диапазон вокруг каждого предсказанного значения, в который в соответствии с прогнозом (при нормальном распределении) предположительно должны попасть 95 % точек, относящихся к будущему. Доверительный интервал помогает определить точность прогноза. Чем он меньше, тем выше достоверность прогноза для данной точки. Доверительный интервал по умолчанию определяется для 95 % точек, но это значение можно изменить с помощью стрелок вверх или вниз.

Сезонность

Сезонность — это число для длины (количества точек) сезонного шаблона и автоматически обнаруживается. Например, в ежегодном цикле продаж, каждый из которых представляет месяц, сезонность составляет 12. Автоматическое обнаружение можно переопрепредидить, выбрав установить вручную и выбрав число.

Примечание: Если вы хотите задать сезонность вручную, не используйте значения, которые меньше двух циклов статистических данных. При таких значениях этого параметра приложению Excel не удастся определить сезонные компоненты. Если же сезонные колебания недостаточно велики и алгоритму не удается их выявить, прогноз примет вид линейного тренда.

Диапазон временной шкалы

Здесь можно изменить диапазон, используемый для временной шкалы. Этот диапазон должен соответствовать параметру Диапазон значений.

Диапазон значений

Здесь можно изменить диапазон, используемый для рядов значений. Этот диапазон должен совпадать со значением параметра Диапазон временной шкалы.

Заполнить отсутствующие точки с помощью

Для обработки отсутствующих точек в Excel используется интерполяция, то есть отсутствующие точки будут заполнены в качестве взвешенного среднего значения соседних точек, если отсутствует менее 30 % точек. Чтобы нули в списке не были пропущены, выберите в списке пункт Нули.

Использование агрегатных дубликатов

Если данные содержат несколько значений с одной меткой времени, Excel находит их среднее. Чтобы использовать другой метод вычисления, например Медиана илиКоличество,выберите нужный способ вычисления из списка.

Включить статистические данные прогноза

Установите этот флажок, если хотите поместить на новом листе дополнительную статистическую информацию о прогнозе. При этом добавляется таблица статистики, созданная с помощью прогноза. Ets. Функция СТАТ и показатели, такие как коэффициенты сглаживания (“Альфа”, “Бета”, “Гамма”) и метрики ошибок (MASE, SMAPE, MAE, RMSE).

Прогноз в Excel

Функция ПРОГНОЗ встроена в функцию Excel, которая входит в Статистическую функцию, которая используется для возврата прогноза будущего значения на основе существующих заданных значений. В финансовом учете эта функция ПРОГНОЗ будет полезна для расчета прогнозных отчетов. Например, если нам известны значения продаж за последние два месяца, мы можем легко предсказать продажи в следующем месяце, используя эту функцию FORECAST. Синтаксис для функции FORECAST приведен ниже.

ПРОГНОЗ Формула в Excel

Ниже приведена ПРОГНОЗНАЯ формула в Excel:

excel-forecast-function-2.png.webp

Аргументы функции ПРОГНОЗ в Excel:

  • X-: это числовое значение, где нам нужно прогнозировать новое значение y
  • Known_ Y-: это Known y_values ​​является зависимым массивом или диапазоном данных.
  • Known_ X-: это известные x_values ​​- это независимый массив или диапазон данных.

Особенности прогнозирования:

  • Эта функция обычно связана с будущими событиями
  • Он используется в качестве статистического инструмента и методов
  • В основном используется для прогнозирования данных о продажах фьючерсов
  • Он анализирует настоящие и прошлые данные.

Прогнозирование:

Функция прогнозирования в основном используется в FMCG, финансовом, бухгалтерском учете и управлении рисками, где мы можем прогнозировать будущие показатели продаж. Предположим, что у FMCG компании огромные продажи, чтобы узнать продажи в следующем месяце или в следующем году, эта функция FORECAST очень полезна для прогнозирования. точный результат, который будет полезен руководству при анализе выручки и других рекламных отчетов.

Функция прогнозирования будет относиться к категории статистической функции, здесь мы рассмотрим пошаговую процедуру ее использования.

  • Перейдите в меню формул и нажмите «Вставить функцию». Появится диалоговое окно. Выберите категорию статистически. Как только вы выберете статистику, вы найдете список функций. Выберите функцию прогноза

excel-forecast-function-3.png.webp

В расширенной версии мы можем использовать ярлык, в котором в меню формул мы видим больше функций

Перейти к формулам–> Выбрать дополнительную функцию–> Статистика–> Прогноз

excel-forecast-function-4.png.webp

Как использовать функцию ПРОГНОЗ в Excel?

ПРОГНОЗ Функция очень проста в использовании. Давайте теперь посмотрим, как использовать функцию FORECAST в Excel с помощью нескольких примеров.

Вы можете скачать этот шаблон функции прогноза Excel здесь – Шаблон функции прогноза Excel

ПРОГНОЗ в Excel – Пример № 1

В этом примере мы будем использовать функцию FORECAST, которая будет прогнозировать данные о продажах в следующем месяце. Предположим, что популярная FMCG компания имеет данные о продажах с разбивкой по месяцам, и руководству необходимо выяснить прогноз продаж, чтобы получить продажи в следующем месяце. В этом сценарии функция прогнозирования будет очень полезна для указания будущих продаж

Здесь, в приведенном ниже примере, мы можем видеть данные о продажах с разбивкой по годам, которые дали большой доход, теперь мы будем использовать функцию прогноза, чтобы предсказать, как продажи будут в 2009 году.

excel-forecast-function-5.png.webp

В приведенных выше данных о продажах мы видим товар, который получил доход за год. Чтобы предсказать данные следующего года, мы используем функцию ПРОГНОЗ.

За 2008 год название продукта «Grommer» заработало 6000000 продаж. Для того, чтобы предсказать следующий год, т. Е. Объем продаж в 2009 году, мы можем использовать ПРОГНОЗ в Excel, что показано с помощью приведенных ниже данных о продажах.

excel-forecast-function-6.png.webp

Таким образом, мы должны использовать ПРОГНОЗ в Excel, чтобы получить значение продаж в следующем году, где

D12 – х-числовое значение.

C3: C11 –Know_Y Значение.

D3: D11 – Известное_X значение.

Результат:

excel-forecast-function-7.png.webp

Доход от продаж для продукта Groomer за 2009 год составляет 6222222. Таким образом, мы можем легко предсказать доход от продаж для данного продукта.

Давайте рассмотрим вышеуказанные данные о продажах в динамическом графическом формате, чтобы их можно было легко понять

Для отображения вышеуказанных данных о продажах в графическом формате диаграммы выполните следующие шаги:

  • Выберите ячейку из C3: D12.

excel-forecast-function-8.png.webp

  • Выберите Вставить вкладку, затем выберите опцию Линейный график. В линейном графике выберите первый вариант.

excel-forecast-function-9.png.webp

  • Диаграмма была отображена, и прогнозируемое значение для 2009 года было показано в формате графика ниже.

excel-forecast-function-10.png.webp

Результат:

Приведенные ниже данные о продажах линейного графика ясно показывают, что за 2009 год мы получили больший доход, когда синяя линия идет вверх и указывает на точный прогноз 6222222.

excel-forecast-function-11.png.webp

ПРОГНОЗ в Excel – Пример № 2

В приведенном ниже примере мы теперь увидим месячные продажи, используя прогноз в Excel, где в предыдущем примере мы видели продажи по годам.

Рассмотрим приведенные ниже продажи, в которых имеются месячные данные о продажах. Теперь нам нужно спрогнозировать продажи в следующем году, используя функцию прогноза.

excel-forecast-function-12.png.webp

Здесь мы изменили некоторые значения продаж, чтобы получить точный результат прогнозирования, как показано ниже.

excel-forecast-function-13.png.webp

  • Вставить функцию прогноза

excel-forecast-function-14.png.webp

  • Выберите значение x как B14

excel-forecast-function-15.png.webp

  • Выберите известные у из C2: C13

excel-forecast-function-16.png.webp

  • Выберите известные х из B2: B13

excel-forecast-function-17.png.webp

= ПРОГНОЗ (В14, С2: С13, В2: В13)

excel-forecast-function-18.png.webp

Результатом является:

excel-forecast-function-19.png.webp

Точно так же мы находим другие значения

excel-forecast-function-20.png.webp

Теперь мы можем видеть, что прогноз в Excel предсказал некоторые значения продаж на 2019 год, что показывает увеличение продаж за соответствующий месяц.

Вышеуказанные данные о продажах и прогнозировании могут отображаться в формате динамической линейной диаграммы, чтобы они были легко доступны руководству.

Чтобы вставить график, выполните следующие действия.

  • Выберите месяц и столбец данных о продажах

excel-forecast-function-21.png.webp

  • Перейти, чтобы вставить меню. Выберите тип графика

excel-forecast-function-22.png.webp

  • Выберите формат графика графика 3D

excel-forecast-function-23.png.webp

Теперь выберите столбец данных о месяце и продажах для выбора графика, после чего нам нужно выбрать тип линейного графика, после чего отобразился график линейного графика, как показано ниже

excel-forecast-function-24.png.webp

Для отображения графика прогноза выберите столбец прогноза вместе с месяцем и данными о продажах. Таким образом, вы получите нижеприведенную таблицу прогнозирования, как показано ниже.

excel-forecast-function-25.png.webp

На приведенном выше графике мы видим разницу, когда синяя линия показывает продажи за предыдущий год, а оранжевая линия показывает будущие прогнозируемые продажи, которые означают, что рост будет увеличен в течение следующих трех месяцев по сравнению с предыдущим 2018 годом.

Преимущества использования ПРОГНОЗА в Excel

  • Полезно для прогнозирования продаж по месяцам и годам
  • Обычно используется во всех FMCG, финансовых и инвестиционных компаниях для определения роста будущих продаж.

Рекомендуемые статьи

Это было руководство к функции прогнозирования Excel. Здесь мы обсуждаем формулу прогноза и как использовать функцию прогноза вместе с практическими примерами и загружаемым шаблоном Excel. Вы также можете просмотреть наши другие предлагаемые статьи –

  1. Функция Excel COMBIN
  2. Функция INT Excel
  3. ПОДСКАЗКА в Excel
  4. Функция LN Excel

Преимущества прогнозирования

Прогнозирование поможет вам принимать правильные решения и зарабатывать/экономить деньги. Ниже приведен пример

  • Выбирайте оптимальный размер товарных запасов

Время – деньги. Пространство стоит денег. То, что вам нужно, это использовать все способы для сокращения объема товарных запасов. Конечно, без риска столкнуться с дефицитом.

Как? Путем прогнозирования!

Шаг 2

Так как мы рассматриваем аддитивную модель вида: 

Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда и значениями скользящей средней St+Et = Yt-Tt, так как Yt и Tt мы уже знаем.

Поиск сезонной и случайной составляющей

Используем оценки сезонной компоненты (St+Et) для расчета значений сезонной компоненты St. Для этого найдем средние за каждый интервал (по всем годам) оценки сезонной компоненты St.

Расчет сезонной составляющей

Средняя оценка сезонной компоненты находится как сумма по столбцу, деленная на количество заполненных строк в этом столбце. В нашем случае оценки сезонной составляющей расположились в строках без пересечений, поэтому сумма по столбцам состоит из одиночных значений, следовательно и среднее будет таким же. Если бы мы располагали периодом побольше, например с 2015, у нас бы добавилась еще одна строка и мы смогли бы полноценно найти среднее, поделив сумму на 2.

В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем интервалам должна быть равна нулю. Поэтому найдя значение случайной составляющей, поделив сумму средних оценок сезонной составляющей на 12, мы вычитаем ее значение из каждой средней оценки и получаем скорректированную сезонную компоненту, St.

Далее, заполняем нашу таблицу значениями сезонной составляющей дублируя ряд каждые 12 месяцев, то есть три раза:

Добавление сезонной составляющей

Скачивание образца книги

Щелкните эту ссылку, чтобы скачать книгу с Excel FORECAST. Примеры функции ETS

Прогнозирование с использованием Пакета аналитических инструментов

Перед тем, как продолжить, проверьте, что Excel ATP (Пакет аналитических инструментов) установлен. Для получения подробной информации обратитесь к секции Установка Пакета аналитических документов.

К сожалению, такие идеальные данные с такой простой и ясной линейной зависимостью довольно редки в реальной жизни. Давайте взглянем, что предлагает Excel для более сложных случаев с более сложными данными.

Шаг 4

Имея рассчитанные значения S(t) и T(t) мы можем рассчитать прогнозные значения уровней ряда Y(t). Для этого накладываем уровни сезонности на тренд.

Прогнозные значения

Теперь построим график известных значений Y(t) и спрогнозированных за 2018 год.

Фактические и прогнозные значения

Вот мы и нашли спрогнозированные значения уровней продаж на 2018 год. Значения отражают возрастающую тенденцию и сезонные пики. Конечно, эти данные не дают 100% точности, ведь существует множество внешних воздействий, которые могут изменить направление тренда, поэтому к прогнозным значениям обычно строят доверительный интервал, это такой коридор, внутри которого могут колебаться прогнозные значения с заданной вероятностью (чаще всего выбирают 95%). Но об этом я расскажу в следующей статье.

Дополнительные сведения

Вы всегда можете задать вопрос специалисту Excel Tech Community или попросить помощи в сообществе Answers community.

Статьи по теме

Функции прогнозирования

Как узнать, какую модель выбрать?

Обратите внимание, что вам не нужно пробовать каждый метод и затем выбирать, какой из них подходит лучше всего. Этого можно достичь путем автоматизации, так как существует огромное количество доступных методов. Если вы хотите протестировать на своих данных все модели, вы можете отправить их в Lokad. У нас есть мощная компьютерная система которая “тестирует” все модели и выбирает только те, которые лучше всего работают с данными вашего бизнеса (более подробная информация о продуктах Lokad).

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...