Метод Крамера, примеры решений

Решение системы линейных уравнений методом Крамера онлайн с подробным решением

Решить систему линейных уравнений методом Крамера

Количество неизвестных величин в системе:

Изменить названия переменных в системе

Заполните систему линейных уравнений:

Ввод данных в калькулятор для решения систем линейных уравнений методом Крамера

  • В онлайн калькулятор вводить можно числа или дроби. Более подробно читайте в правилах ввода чисел.
  • Для изменения в уравнении знаков с “+” на “-” вводите отрицательные числа.
  • Если в уравнение отсутствует какая-то переменная, то в соответствующем поле ввода калькулятора введите ноль.
  • Если в уравнение перед переменной отсутствуют числа, то в соответствующем поле ввода калькулятора введите единицу.

Например, линейное уравнение x1 – 7x2 – x4 = 2

будет вводится в калькулятор следующим образом:

 x1 +  x2 +  x3 +  x4 = 

Дополнительные возможности калькулятора для решения систем линейных уравнений методом Крамера

  • Между полями для ввода можно перемещаться нажимая клавиши “влево”, “вправо”, “вверх” и “вниз” на клавиатуре.
  • Вместо x1, x2, … вы можете ввести свои названия переменных.

Вводить можно числа или дроби (-2.4, 5/7, …). Более подробно читайте в правилах ввода чисел.

Метод Крамера

Метод Крамера − это метод решения квадратной системы линейных уравнений с отличным от нуля определителем основной матрицы. Такая система линейных уравнений имеет единственное решение.

Пусть задана следующая система линейных уравнений:

Заменим данную систему (1) эквивалентным ей матричным уравнением

где A -основная матрица системы:

а x и b − векторы столбцы:

первый из которых нужно найти, а второй задан.

Так как мы предполагаем, что определитель Δ матрицы A отличен от нуля, то существует обратная к A матрица A-1. Тогда умножая тождество (2) слева на обратную матрицу A-1, получим:

Учитывая, что произведение взаимно обратных матриц является единичной матрицей (A-1A=E), получим

Обратная матрица имеет следующий вид:

где Aij − алгебраическое дополнение матрицы A, Δ − определитель матрицы A.

Из (4) и (5) имеем:

или

где Δi − это определитель матрицы, полученной из матрицы A, заменой столбца i на вектор b.

Мы получили формулы Крамера:

Алгоритм решения системы линейных уравнений методом Крамера

  1. Вычислить определитель Δ основной матрицы A.
  2. Замена столбца 1 матрицы A на вектор свободных членов b.
  3. Вычисление определителя Δ1 полученной матрицы A1.
  4. Вычислить переменную x1=Δ1/Δ.
  5. Повторить шаги 2−4 для столбцов 2, 3, …, n матрицы A.

Чтобы решить систему уравнений методом Крамера онлайн:

  • Установите необходимое число неизвестных величин.
  • В появившиеся поля введите имеющиеся данные.
  • Отправьте задачу на вычисление кнопкой «Рассчитать».
  • Формула, заложенная в сервисе, включает нахождение определителя матрицы системы. Если результат не равен 0, рассчитываются вспомогательные определители.

Если способ решения все равно остался непонятен, обращайтесь к нам за индивидуальной поддержкой. Мы найдем для вас преподавателя из своего штата, который объяснит, как найти ответ к заданиям. У нас работают специалисты по всем предметам. Вы получите грамотную своевременную консультацию по необходимой теме недорого.

Системы линейных алгебраических уравнений

Основные определения

Система (m) линейных алгебраических уравнений с (n) неизвестными (сокращенно СЛАУ) представляет собой систему вида
( left{ begin{array}{l}a_{11}x_1 + a_{12}x_2 + cdots + a_{1n}x_n = b_1 \a_{21}x_1 + a_{22}x_2 + cdots + a_{2n}x_n = b_2 \cdots \a_{m1}x_1 + a_{m2}x_2 + cdots + a_{mn}x_n = b_mend{array} right. tag{1} )

Уравнения системы называют алгебраическими потому, что левая часть каждого из них есть многочлен от (n) переменных( x_1 , ldots x_n ), а линейными потому, что эти многочлены имеют первую степень.

Числа (a_{ij} in mathbb{R} ) называют коэффициентами СЛАУ. Их нумеруют двумя индексами: номером уравнения (i) и номеромнеизвестного (j). Действительные числа ( b_1 , ldots b_m ) называют свободными членами уравнений.

СЛАУ называют однородной, если ( b_1 = b_2 = ldots = b_m = 0 ). Иначе её называют неоднородной.

Решением СЛАУ, да и вообще всякой системы уравнений, называют такой набор значений неизвестных ( x_1^circ, ldots , x_n^circ ),при подстановке которых каждое уравнение системы превращается в тождество. Любое конкретное решение СЛАУ также называют её частным решением.

Решить СЛАУ — значит решить две задачи:
— выяснить, имеет ли СЛАУ решения;
— найти все решения, если они существуют.

СЛАУ называют совместной, если она имеет какие-либо решения. В противном случае её называют несовместной. Однородная СЛАУвсегда совместна, поскольку нулевой набор значений её неизвестных всегда является решением.

Если СЛАУ (1) имеет решение, и притом единственное, то её называют определенной, а если решение неединственное — то неопределенной.При (m=n), т.е. когда количество уравнений совпадает с количеством неизвестных, СЛАУ называют квадратной.

Формы записи СЛАУ

Кроме координатной формы (1) записи СЛАУ часто используют и другие её представления.

Рассматривая коэффициенты (a_{ij}) СЛАУ при одном неизвестном (x_j) как элементы столбца, а (x_j) как коэффициент, на который умножаетсястолбец, из (1) получаем новую форму записи СЛАУ:
( begin{pmatrix}a_{11} \a_{21} \vdots \a_{m1}end{pmatrix} x_1 + begin{pmatrix}a_{12} \a_{22} \vdots \a_{m2}end{pmatrix} x_2 + ldots + begin{pmatrix}a_{1n} \a_{2n} \vdots \a_{mn}end{pmatrix} x_n = begin{pmatrix}b_1 \b_2 \vdots \b_mend{pmatrix} )
или, обозначая столбцы соответственно ( a_1 , ldots , a_n , b ),
( x_1 a_1 + x_2 a_2 + ldots + x_n a_n = b tag{2} )

Таким образом, решение СЛАУ (1) можно трактовать как представление столбца (b) в виде линейной комбинации столбцов ( a_1, ldots, a_n ).Соотношение (2) называют векторной записью СЛАУ.

Обратим внимание на то, что слева в каждом уравнении системы (1) стоит сумма попарных произведений — так же, как и в произведении двух матриц.Если взять за основу произведение матриц, то СЛАУ (1) можно записать так :
( begin{pmatrix}a_{11} & a_{12} & cdots & a_{1n} \a_{21} & a_{22} & cdots & a_{2n} \vdots & vdots & ddots & vdots \a_{m1} & a_{m2} & cdots & a_{mn}end{pmatrix} begin{pmatrix}x_1 \x_2 \vdots \x_nend{pmatrix} = begin{pmatrix}b_1 \b_2 \vdots \b_mend{pmatrix} )
или (Ax=b), где (A) — матрица размера (m times n); (x) — столбец неизвестных; (b) — столбец свободных членов:
( A = begin{pmatrix}a_{11} & a_{12} & cdots & a_{1n} \a_{21} & a_{22} & cdots & a_{2n} \vdots & vdots & ddots & vdots \a_{m1} & a_{m2} & cdots & a_{mn}end{pmatrix} ,; )( X = begin{pmatrix}x_1 \x_2 \vdots\x_nend{pmatrix} ,; )( B = begin{pmatrix}b_1 \b_2 \vdots \b_mend{pmatrix} )

Поскольку (A ;,; X) и (B) являются матрицами, то запись СЛАУ (1) в виде (AX=B) называют матричной. Если (B=0), то СЛАУявляется однородной и в матричной записи имеет вид (AX=0).

Приведенные рассуждения показывают, что задачи :
а) решения СЛАУ (1)
б) представления столбца в виде линейной комбинации данных столбцов
в) решения матричных уравнений вида (AX=B)
являются просто различной формой записи одной и той же задачи.

Критерий совместности СЛАУ

“Триединство” форм записи СЛАУ позволяет легко получить критерий совместности СЛАУ. Напомним, что содержательный смысл это понятие имеетдля неоднородных СЛАУ (однородные СЛАУ всегда совместны).

Матрицу
( A = begin{pmatrix}a_{11} & a_{12} & cdots & a_{1n} \a_{21} & a_{22} & cdots & a_{2n} \vdots & vdots & ddots & vdots \a_{m1} & a_{m2} & cdots & a_{mn}end{pmatrix} )
называют матрицей (коэффициентов) СЛАУ (1), а матрицу
( (A|B) = left( begin{array}{cccc|c}a_{11} & a_{12} & cdots & a_{1n} & b_1 \a_{21} & a_{22} & cdots & a_{2n} & b_2 \vdots & vdots & ddots & vdots & vdots \a_{m1} & a_{m2} & cdots & a_{mn} & b_mend{array} right) )
расширенной матрицей СЛАУ (1). Расширенная матрица полностью характеризует СЛАУ. Это означает, что по этой матрице однозначно(если сохранить обозначения для неизвестных) восстанавливается сама СЛАУ.

Теорема Кронекера-Капелли. Для совместности СЛАУ (AX=B) необходимо и достаточно, чтобы ранг её матрицы (A) был равен рангуеё расширенной матрицы ( (A|B) ).

Формулы Крамера

Теорема. СЛАУ с квадратной невырожденной матрицей имеет решение, и притом единственное, которое определяется поформулам Крамера :
$$ x_i = frac{Delta_i}{|A|} ;,quad i=overline{1,n} tag{3} $$
где (Delta_i) — определитель матрицы, получающейся из матрицы (A) заменой (i)-го столбца на столбец свободных членов.

Следствие. Однородная СЛАУ с квадратной невырожденной матрицей имеет единственное решение — нулевое.

Если матрица СЛАУ не является квадратной невырожденной, то формулы Крамера не работают и приходится использовать другие методынахождения решений.

Однородные системы

Следующая теорема описывает важнейшее свойство множества решений однородной системы (m) линейных алгебраических уравнений с (n) неизвестными.

Теорема. Если столбцы ( X^{(1)}, X^{(2)}, ldots , X^{(s)} ) — решения однородной СЛАУ (AX=0), то любая их линейная комбинациятакже является решением этой системы.

Следствие. Если однородная СЛАУ имеет ненулевое решение, то она имеет бесконечно много решений.

Естественно попытаться найти такие решения ( X^{(1)}, ldots , X^{(s)} ) системы (AX=0), чтобы любое другое решение этой системыпредставлялось в виде их линейной комбинации и притом единственным образом. Оказывается, что это всегда возможно и приводит к следующему определению.

Определение. Любой набор из (k=n-r) линейно независимых столбцов, являющихся решениями однородной СЛАУ (AX=0), где(n) — количество неизвестных в системе, а (r) — ранг её матрицы (A), называют фундаментальной системой решений этой однородной СЛАУ.

При исследовании и решении однородных систем линейных алгебраических уравнений будем использовать следующую терминологию. Если в матрице(A) однородной СЛАУ (AX=0) фиксировать базисный минор, то ему соответствуют базисные столбцы и, следовательно, набор неизвестных, отвечающихэтим столбцам. Указанные неизвестные называют базисными, или зависимыми, а остальные неизвестные — свободными, илинезависимыми.

Теорема. Пусть дана однородная СЛАУ (AX=0) с (n) неизвестными и ( text{rang}A = r ). Тогда существует набор из (k=n-r)решений ( X^{(1)}, ldots , X^{(k)} ) этой СЛАУ, образующих фундаментальную систему решений.

Если в фундаментальной системе решений все значения независимых неизвестных равны нулю, кроме одного, которое равно единице, то такую систему решенийназывают фундаментальной нормальной системой решений.

Следствие. С помощью нормальной фундаментальной системы решений однородной СЛАУ множество всех решений можно описать формулой :
$$ X = c_1X^{(1)} + ldots + c_kX^{(k)} $$
где постоянные ( c_i ;, quad i=overline{1,k} ), принимают произвольные значения.

Следствие. Для существования ненулевого решения у однородной квадратной СЛАУ необходимо и достаточно, чтобы её матрица была вырождена.

Неоднородные системы

Рассмотрим произвольную СЛАУ (AX=B). Заменив столбец (B) свободных членов нулевым, получим однородную СЛАУ (AX=0), соответствующуюнеоднородной СЛАУ (AX=B). Справедливо следующее утверждение о структуре произвольного решения неоднородной СЛАУ.

Теорема. Пусть столбец (X^circ) — некоторое решение СЛАУ (AX=B). Произвольный столбец (X) является решением этой СЛАУ тогда итолько тогда, когда он имеет представление (X = X^circ + Y ), где (Y) — решение соответствующей однородной СЛАУ (AY=0).

Следствие. Пусть (X’) и (X”) — решения неоднородной системы (AX=B). Тогда их разность ( Y = X’ – X” ) являетсярешением соответствующей однородной системы (AY=0).

Эта теорема сводит проблему решения СЛАУ к случаю однородной системы: чтобы описать все решения неоднородной СЛАУ, достаточно энать одноеё решение (частное решение) и все решения соответствующей однородной СЛАУ.

Чтобы решить неоднородную систему, надо, во-первых, убедиться, что она совместна (например, по теореме Кронекера-Капелли), а во-вторых,найти частное решение (X^circ) этой системы, чтобы свести её к однородной системе.

Теорема о структуре общего решения СЛАУ. Пусть (X^circ) — частное решение СЛАУ (AX=B) и известна фундаментальная системарешений ( X^{(1)}, ldots , X^{(k)} ) соответствующей однородной системы (AX=0). Тогда любое решение СЛАУ (AX=B) можно представить в виде$$ X = X^circ + c_1 X^{(1)} + c_2 X^{(2)} + ldots + c_k X^{(k)} $$
где ( c_i in mathbb{R} ;, quad i=overline{1,k} ).
Эту формулу называют общим решением СЛАУ.

Решение системы линейных уравнений методом Крамера

Метод Крамера

Метод Крамера – это метод решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (то есть в случае, когда система уравнений имеет единственное решение). Основным математическим действием при решении системы уравнения методом Крамера является вычисление определителей матриц размерностью n (где n – количество уравнений в системе).

На нашем сайте вы можете решать системы уравнений методом Крамера в режиме онлайн. При этом решение вы получаете мгновенно, и оно является полным и подробным. При решении системы уравнений нужно находить определители нескольких разных матриц. Для сокращения решения эта операция упрощена (выдаётся лишь результат). Но вы можете при необходимости получить полное решение нахождения детерминанта матрицы. Соответствующий калькулятор имеется на нашем ресурсе.

Решение системы по формулам Крамера

Для того чтобы освоить данный параграф Вы должны уметь раскрывать определители «два на два» и «три на три». Если с определителями плохо, пожалуйста, изучите урок Как вычислить определитель?

Сначала мы подробно рассмотрим правило Крамера для системы двух линейных уравнений с двумя неизвестными. Зачем? – Ведь простейшую систему можно решить школьным методом, методом почленного сложения!

Дело в том, что пусть иногда, но встречается такое задание – решить систему двух линейных уравнений с двумя неизвестными по формулам Крамера. Во-вторых, более простой пример поможет понять, как использовать правило Крамера для более сложного случая – системы трех уравнений с тремя неизвестными.

Кроме того, существуют системы линейных уравнений с двумя переменными, которые целесообразно решать именно по правилу Крамера!

Рассмотрим систему уравнений pravilo_kramera_matrichnyi_metod_clip_image002.gif

На первом шаге вычислим определитель  pravilo_kramera_matrichnyi_metod_clip_image004.gif, его называют главным определителем системы.

Если pravilo_kramera_matrichnyi_metod_clip_image006.gif, то система имеет бесконечно много решений или несовместна (не имеет решений). В этом случае правило Крамера не поможет, нужно использовать метод Гаусса.

Если pravilo_kramera_matrichnyi_metod_clip_image008.gif, то система имеет единственное решение, и для нахождения корней мы должны вычислить еще два определителя:
pravilo_kramera_matrichnyi_metod_clip_image010.gif и pravilo_kramera_matrichnyi_metod_clip_image012.gif

На практике вышеуказанные определители также могут обозначаться латинской буквой pravilo_kramera_matrichnyi_metod_clip_image014.gif.

Корни уравнения находим по формулам:
pravilo_kramera_matrichnyi_metod_clip_image016.gif, pravilo_kramera_matrichnyi_metod_clip_image018.gif

Пример 7

Решить систему линейных уравнений
pravilo_kramera_matrichnyi_metod_clip_image020.gif

Решение: Мы видим, что коэффициенты уравнения достаточно велики, в правой части присутствуют десятичные дроби с запятой. Запятая – довольно редкий гость в практических заданиях по математике, эту систему я взял из эконометрической задачи.

Как решить такую систему? Можно попытаться выразить одну переменную через другую, но в этом случае наверняка получатся страшные навороченные дроби, с которыми крайне неудобно работать, да и оформление решения будет выглядеть просто ужасно. Можно умножить второе уравнение на 6 и провести почленное вычитание, но и здесь возникнут те же самые дроби.

Что делать? В подобных случаях и приходят на помощь формулы Крамера.

pravilo_kramera_matrichnyi_metod_clip_image022.gif, значит, система имеет единственное решение.

pravilo_kramera_matrichnyi_metod_clip_image024.gif;
pravilo_kramera_matrichnyi_metod_clip_image026.gif

pravilo_kramera_matrichnyi_metod_clip_image028.gif;
pravilo_kramera_matrichnyi_metod_clip_image030.gif

Ответ: pravilo_kramera_matrichnyi_metod_clip_image032.gif, pravilo_kramera_matrichnyi_metod_clip_image034.gif

Оба корня обладают бесконечными хвостами, и найдены приближенно, что вполне приемлемо (и даже обыденно) для задач эконометрики.

Комментарии здесь не нужны, поскольку задание решается по готовым формулам, однако, есть один нюанс. Когда используете данный метод, обязательным фрагментом оформления задания является следующий фрагмент: «pravilo_kramera_matrichnyi_metod_clip_image036.gif, значит, система имеет единственное решение». В противном случае рецензент может Вас наказать за неуважение к теореме Крамера.

Совсем не лишней будет проверка, которую удобно провести на калькуляторе: подставляем приближенные значения pravilo_kramera_matrichnyi_metod_clip_image032_0000.gif pravilo_kramera_matrichnyi_metod_clip_image034_0000.gif в левую часть каждого уравнения системы. В результате с небольшой погрешностью должны получиться числа, которые находятся в правых частях.

Пример 8

Решить систему по формулам Крамера.  Ответ представить в обыкновенных неправильных дробях. Сделать проверку.
pravilo_kramera_matrichnyi_metod_clip_image038.gif

Это пример для самостоятельного решения (пример чистового оформления и ответ в конце урока).

Переходим к рассмотрению правила Крамера для системы трех уравнений с тремя неизвестными:
pravilo_kramera_matrichnyi_metod_clip_image040.gif

Находим главный определитель системы:
pravilo_kramera_matrichnyi_metod_clip_image042.gif

Если pravilo_kramera_matrichnyi_metod_clip_image044.gif, то система имеет бесконечно много решений или несовместна (не имеет решений). В этом случае правило Крамера не поможет, нужно использовать метод Гаусса.

Если pravilo_kramera_matrichnyi_metod_clip_image046.gif, то система имеет единственное решение и для нахождения корней мы должны вычислить еще три определителя:
pravilo_kramera_matrichnyi_metod_clip_image048.gif, pravilo_kramera_matrichnyi_metod_clip_image050.gif, pravilo_kramera_matrichnyi_metod_clip_image052.gif

И, наконец, ответ рассчитывается по формулам:
pravilo_kramera_matrichnyi_metod_clip_1.gif

Как видите, случай «три на три» принципиально ничем не отличается от случая «два на два», столбец свободных членов pravilo_kramera_matrichnyi_metod_clip_image060.gif последовательно «прогуливается» слева направо по столбцам главного определителя.

Пример 9

Решить систему по формулам Крамера. 
pravilo_kramera_matrichnyi_metod_clip_image062.gif

Решение: Решим систему по формулам Крамера.
pravilo_kramera_matrichnyi_metod_clip_image064.gif
pravilo_kramera_matrichnyi_metod_clip_image066.gif, значит, система имеет единственное решение.

pravilo_kramera_matrichnyi_metod_clip_image068.gif

pravilo_kramera_matrichnyi_metod_clip_image070.gif

pravilo_kramera_matrichnyi_metod_clip_image072.gif

pravilo_kramera_matrichnyi_metod_clip_image074.gif

pravilo_kramera_matrichnyi_metod_clip_image076.gif

pravilo_kramera_matrichnyi_metod_clip_image078.gif

Ответ: pravilo_kramera_matrichnyi_metod_clip_image080.gif.

Собственно, здесь опять комментировать особо нечего, ввиду того, что решение проходит по готовым формулам. Но есть пара замечаний.

Бывает так, что в результате вычислений получаются «плохие» несократимые дроби, например: pravilo_kramera_matrichnyi_metod_clip_image082.gif.
Я рекомендую следующий алгоритм «лечения». Если под рукой нет компьютера, поступаем так:

1) Возможно, допущена ошибка в вычислениях. Как только Вы столкнулись с «плохой» дробью, сразу необходимо проверить, правильно ли переписано условие. Если условие переписано без ошибок, то нужно пересчитать определители, используя разложение по другой строке (столбцу).

2) Если в результате проверки ошибок не выявлено, то вероятнее всего, допущена опечатка в условии задания. В этом случае спокойно и ВНИМАТЕЛЬНО прорешиваем задание до конца, а затем обязательно делаем проверку и оформляем ее на чистовике после решения. Конечно, проверка дробного ответа –  занятие неприятное, но зато будет обезоруживающий аргумент для преподавателя, который ну очень любит ставить минус за всякую бяку вроде pravilo_kramera_matrichnyi_metod_clip_image084.gif. Как управляться с дробями, подробно расписано в ответе для Примера 8.

Если под рукой есть компьютер, то для проверки используйте автоматизированную программу, которую можно бесплатно скачать в самом начале урока. Кстати, выгоднее всего сразу воспользоваться программой (еще до начала решения), Вы сразу будете видеть промежуточный шаг, на котором допустили ошибку! Этот же калькулятор автоматически рассчитывает решение системы матричным методом.

Замечание второе. Время от времени встречаются системы в уравнениях которых отсутствуют некоторые переменные, например:
pravilo_kramera_matrichnyi_metod_clip_image086.gif
Здесь в первом уравнении отсутствует переменная pravilo_kramera_matrichnyi_metod_clip_image088.gif, во втором – переменная pravilo_kramera_matrichnyi_metod_clip_image090.gif. В таких случаях очень важно правильно и ВНИМАТЕЛЬНО записать главный определитель:
pravilo_kramera_matrichnyi_metod_clip_image00222.gif – на месте отсутствующих переменных ставятся нули.
Кстати определители с нулями рационально раскрывать по той строке (столбцу), в которой находится ноль, так как вычислений получается заметно меньше.

Пример 10

Решить систему по формулам Крамера. 
pravilo_kramera_matrichnyi_metod_clip_image094.gif

Это пример для самостоятельного решения (образец чистового оформления и ответ в конце урока).

Для случая системы 4 уравнений с 4 неизвестными формулы Крамера записываются по аналогичным принципам. Живой пример можно посмотреть на уроке Свойства определителя. Понижение порядка определителя – пять определителей 4-го порядка вполне решабельны. Хотя задача уже весьма напоминает ботинок профессора на груди у студента-счастливчика.

Описание метода Крамера.

Есть система уравнений:

Линейные уравнения. Решение систем линейных уравнений. Метод Крамера.

Систему 3-х уравнений можно решить методом Крамера, который рассмотрен выше для системы 2-х уравнений.

Составляем определитель из коэффициентов у неизвестных:

Линейные уравнения. Решение систем линейных уравнений. Метод Крамера.

Это будет определитель системы. Когда D≠0, значит, система совместна. Теперь составим 3 дополнительных определителя:

Линейные уравнения. Решение систем линейных уравнений. Метод Крамера.,Линейные уравнения. Решение систем линейных уравнений. Метод Крамера.,Линейные уравнения. Решение систем линейных уравнений. Метод Крамера.

Решаем систему по формулам Крамера:

Линейные уравнения. Решение систем линейных уравнений. Метод Крамера.;Линейные уравнения. Решение систем линейных уравнений. Метод Крамера.;Линейные уравнения. Решение систем линейных уравнений. Метод Крамера.;

Приёмы для вычисления определителя матрицы

Для вычисления определителя матрицы с размерностью больше чем 2 на 2, можно использовать несколько способов:

  • Правило треугольников, или правило Саррюса, напоминающее это же правило. Суть метода треугольников в том, что при вычислении определителя произведения всех чисел, соединённых на рисунке красной линией справа, записываются со знаком плюс, а все числа, соединённые аналогичным образом на рисунке слева – со знаком минус. B то, и другое правило подходит для матриц размером 3 х 3. В случае же правила Саррюса сначала переписывается сама матрица, а рядом с ней рядом переписываются ещё раз её первый и второй столбец. Через матрицу и эти дополнительные столбцы проводятся диагонали, члены матрицы, лежащие на главной диагонали или на параллельной ей записываются со знаком плюс, а элементы, лежащие на побочной диагонали или параллельно ей – со знаком минус.

Правило треугольников для вычисления определителя для метода Крамера

Рисунок 1. Правило треугольников для вычисления определителя для метода Крамера

  • С помощью метода, известного как метод Гаусса, также иногда этот метод называют понижением порядка определителя. В этом случае матрица преобразуется и приводится к треугольному виду, а затем перемножаются все числа, стоящие на главной диагонали. Следует помнить, что при таком поиске определителя нельзя домножать или делить строчки или столбцы на числа без вынесения их как множителя или делителя. В случае поиска определителя возможно только вычитать и складывать строки и столбы между собой, предварительно помножив вычитаемую строку на ненулевой множитель. Также при каждой перестановке строчек или столбцов матрицы местами следует помнить о необходимости смены конечного знака у матрицы.
  • При решении методом Крамера СЛАУ с 4 неизвестными, лучше всего будет применять именно метод Гаусса для поиска и нахождения определителей или опредлять детерминант через поиск миноров.

Порядок решения однородной системы уравнений

Отдельный случай – это однородные системы:

left{ begin{aligned} a_{11}x + a_{12}y + a_{13}z = 0,\ a_{21}x + a_{22}y + a_{23}z = 0,\ a_{31}x + a_{32}y + a_{33}z = 0. end{aligned} right

(3)

Среди решений однородной системы могут быть, как нулевые решения (x = y = z = 0), так и решения отличны от нуля.

warning-b.pngТеорема
Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...