Метод экспоненциального сглаживания скользящей средней в Excel

Сглаживание экспоненциальным методом в Excel. Пошаговая инструкция. Возможность решить свою задачу бесплатно в онлайн режиме с оформлением результатов в Excel

Формула расчета метода экспоненциального сглаживания в Excel

Ниже на рисунке изображен отчет спроса на определенный продукт за 26 недель. Столбец «Спрос» содержит информацию о количестве проданного товара. В столбце «Прогноз» – формула:

метод экспоненциального сглаживания.

В столбце «Скользящая средняя» определяется прогнозируемый спрос, рассчитанный с помощью обычного вычисления скользящей средней с периодом 6 недель:

Скользящая средняя.

В последнем столбце «Прогноз», с описанной выше формулой применяется метод экспоненциального сглаживания данных в которых значения последних недель имеет больший вес чем предыдущих.

Коэффициент «Альфа:» вводится в ячейке G1, он значит вес присвоения наиболее актуальным данным. В данном примере он имеет значение 30%. Остальные 70% веса распределяется на остальные данные. То есть второе значение с точки зрения актуальности (с право на лево) имеет вес равный 30% от оставшихся 70% веса – это 21%, третье значение имеет вес равен 30% от остальной части 70% веса – 14,7% и так далее.



5.3.1. Использование функции экспоненциального сглаживанияпакета анализа (рис.13)

1)  Выберете в меню пункт Данные  →Анализ данных

2) В спискеинструментов выделите элемент Экспоненциальное сглаживание и щелкните накнопке ОК

3) Щелкните в поле Входнойинтервал и перетащите указатель мыши по ячейкам базового набора данных

4) В поле Факторзатухания (коэффициент затухания) введите число 0,7

5) Так как входнойинтервал содержит ячейку с заголовком столбца, установите флажок Метки

6) Щелкните в поле Выходнойинтервал, а затем в ячейке, начиная с которой должны выводиться результатырасчета прогноза

7) Щелкните накнопке ОК

8) В ячейку,например С1, введите заголовок столбца (например, Прогноз)

9) Результатывыполненный действий будут отображены в столбце С

image014.jpg

Рис.13(метод экспоненциального сглаживания)

Что такое экспоненциальное сглаживание в Excel?

Экспоненциальное сглаживание — один из трех основных методов прогнозирования продаж, используемых в статистических полях. Экспоненциальное сглаживание — более реалистичный метод прогнозирования, позволяющий получить лучшее представление о бизнесе.

  • Логика экспоненциального сглаживания будет такой же, как и у других методов прогнозирования, но этот метод работает на основе взвешенных коэффициентов усреднения. Чем старше данные, тем меньше у них веса или приоритета, а для более свежих данных или релевантных данных им дается больший приоритет или больший вес.
  • Несмотря на то, что экспоненциальное сглаживание учитывается для старых рядов данных, оно отдает предпочтение самым последним наблюдениям или рядам данных.

Типы экспоненциального сглаживания в Excel

В Excel доступны в основном 3 типа экспоненциального сглаживания.

  1. Простое / однократное экспоненциальное сглаживание: В этом типе а (альфа) близко к нулевому значению. когда а (альфа) близко к нулю, это означает, что скорость сглаживания очень низкая.
  2. Двойное экспоненциальное сглаживание: Этот метод подходит для анализа данных, которые показывают больше трендовых индикаторов.
  3. Тройное экспоненциальное сглаживание: Этот метод подходит для данных, которые показывают больше тренда, а также сезонности в ряду.

Где найти экспоненциальное сглаживание в Excel?

Экспоненциальное сглаживание является частью многих инструментов анализа данных в Excel. По умолчанию он не отображается в Excel. Если в вашем Excel не отображается инструмент анализа данных, следуйте нашим старым статьям, чтобы отобразить пакет инструментов анализа данных.

Если он не скрыт, вы должны увидеть параметр «Анализ данных» на вкладке «Данные».

Щелкните Анализ данных; вы увидите много статистических методов. В этой статье мы сосредоточимся на экспоненциальном сглаживании.

Как сделать экспоненциальное сглаживание в Excel?

Ниже приведены примеры выполнения экспоненциального сглаживания в Excel.

Вы можете скачать этот шаблон Excel с экспоненциальным сглаживанием здесь — Шаблон Excel с экспоненциальным сглаживанием

Пример экспоненциального сглаживания №1 — Прогноз продаж

Мы увидим одни простые данные, чтобы сделать прогноз продаж на следующий год. У меня есть данные о доходах за 10 лет.

Используя экспоненциальное сглаживание, нам нужно спрогнозировать доход.

Шаг 1: Щелкните вкладку Данные и Анализ данных.

Шаг 2: Выберите параметр «Экспоненциальное сглаживание».

Шаг 3: Для диапазона ввода укажите доступные точки данных. Диапазон наших данных — B1: B11.

Шаг 4: Коэффициент демпфирования сглаживает график, и его значения должны быть от 0 до 1. Технически это так. 1 — α (альфа). Я упомянул 0,3 как коэффициент демпфирования.

Шаг 5: Поскольку мы также выбрали наш заголовок во входном диапазоне, нам нужно поставить галочку в поле Labels.

Шаг 6: Теперь выберите диапазон, в котором будет отображаться выходной диапазон. Я выбрал следующий столбец существующих данных, то есть C2.

Шаг 7: Теперь нам нужно сказать, нужна ли нам диаграмма для графического представления данных или нет. Всегда рекомендуется представлять данные графически. Итак, выберите вывод диаграммы.

Шаг 8: Мы заполнили все поля. Нажмите ОК, чтобы получить результаты.

Пояснение: Мы установили коэффициент демпфирования на 0,3, а альфа — на 0,7. Это показывает, что для недавних значений (значений выручки за последние годы) имеет вес 70%, а для относительно старых значений — 30%.

График показывает более или менее ту же тенденцию в этом методе. Поскольку предыдущее значение за 2007 год отсутствует, Excel не может вычислить сглаженное значение, а сглаженное значение второй серии данных всегда равно первой точке данных.

Пример экспоненциального сглаживания № 2 — Тренд прогноза при различных коэффициентах демпинга

Мы увидим тенденцию прогноза при различных демпинговых факторах. В этом примере я использую ежемесячные данные о тенденциях продаж.

Введите эти числа в таблицу Excel вертикально.

Шаг 1: Щелкните вкладку Данные и Анализ данных.

Шаг 2: Выберите параметр «Экспоненциальное сглаживание».

Шаг 3: В поле «Диапазон ввода» выберите доступные сведения о предыдущем доходе. Коэффициент демпфирования 0,1.

Шаг 4: Нажмите ОК, чтобы отобразить результаты прогноза, если коэффициент демпфирования равен 0,1.

Теперь запустите экспоненциальное сглаживание еще два раза, изменив коэффициент демпфирования на 0,5 и 0,9.

Коэффициент демпфирования @ 0,5

Коэффициент демпфирования @ 0,9

У нас есть все три разных результата.

Теперь нарисуем для него график. Выберите данные и перейдите на вкладку вставки выберите линейную диаграмму.

График должен выглядеть так, как показано ниже. Вы можете изменить свою диаграмму в соответствии с вашими требованиями; на этом графике я изменил заголовок диаграммы и цвет линии.

Объяснение

  1. Теперь внимательно наблюдайте за графиком, «по мере увеличения коэффициента демпфирования линия или данные на графике становятся плавными».
  2. Коэффициент демпфирования 0,1 означает, что альфа составляет 0,9, поэтому у нас больше волатильности в данных.
  3. Коэффициент демпфирования 0,9 означает, что альфа равна 0,1, поэтому данные имеют меньшую волатильность.

Что нужно помнить об экспоненциальном сглаживании в Excel

  • Альфа-значение будет 1 — значение сброса и наоборот.
  • По мере увеличения значения альфа мы можем видеть больше колебаний в точках данных.
  • Ярлыки необходимо отмечать, если диапазон ввода включает заголовки.
  • Идеальные значения сброса должны быть от 0,2 до 0,3.

УЗНАТЬ БОЛЬШЕ >>

Выполнение аппроксимации

Наименование данного метода происходит от латинского слова proxima – «ближайшая» Именно приближение путем упрощения и сглаживания известных показателей, выстраивание их в тенденцию и является его основой. Но данный метод можно использовать не только для прогнозирования, но и для исследования уже имеющихся результатов. Ведь аппроксимация является, по сути, упрощением исходных данных, а упрощенный вариант исследовать легче.

Главный инструмент, с помощью которого проводится сглаживания в Excel – это построение линии тренда. Суть состоит в том, что на основе уже имеющихся показателей достраивается график функции на будущие периоды. Основное предназначение линии тренда, как не трудно догадаться, это составление прогнозов или выявление общей тенденции.

Но она может быть построена с применением одного из пяти видов аппроксимации:

  • Линейной;
  • Экспоненциальной;
  • Логарифмической;
  • Полиномиальной;
  • Степенной.

Рассмотрим каждый из вариантов более подробно в отдельности.

Урок: Как построить линию тренда в Excel

Способ 1: линейное сглаживание

Прежде всего, давайте рассмотрим самый простой вариант аппроксимации, а именно с помощью линейной функции. На нем мы остановимся подробнее всего, так как изложим общие моменты характерные и для других способов, а именно построение графика и некоторые другие нюансы, на которых при рассмотрении последующих вариантов уже останавливаться не будем.

Прежде всего, построим график, на основании которого будем проводить процедуру сглаживания. Для построения графика возьмем таблицу, в которой помесячно указана себестоимость единицы продукции, производимой предприятием, и соответствующая прибыль в данном периоде. Графическая функция, которую мы построим, будет отображать зависимость увеличения прибыли от уменьшения себестоимости продукции.

  1. Для построения графика, прежде всего, выделяем столбцы «Себестоимость единицы продукции» и «Прибыль». После этого перемещаемся во вкладку «Вставка». Далее на ленте в блоке инструментов «Диаграммы» щелкаем по кнопке «Точечная». В открывшемся списке выбираем наименование «Точечная с гладкими кривыми и маркерами». Именно данный вид диаграмм наиболее подходит для работы с линией тренда, а значит, и для применения метода аппроксимации в Excel.

Построение диаграммы в Microsoft Excel

График построен.

График построен в Microsoft Excel

Для добавления линии тренда выделяем его кликом правой кнопки мыши. Появляется контекстное меню. Выбираем в нем пункт «Добавить линию тренда…».

Добавление линии тренда через контекстное меню в Microsoft Excel

Существует ещё один вариант её добавления. В дополнительной группе вкладок на ленте «Работа с диаграммами» перемещаемся во вкладку «Макет». Далее в блоке инструментов «Анализ» щелкаем по кнопке «Линия тренда». Открывается список. Так как нам нужно применить линейную аппроксимацию, то из представленных позиций выбираем «Линейное приближение».

Добавление линии тренда через блок инструментов на ленте в Microsoft Excel

Если же вы выбрали все-таки первый вариант действий с добавлением через контекстное меню, то откроется окно формата.

В блоке параметров «Построение линии тренда (аппроксимация и сглаживание)» устанавливаем переключатель в позицию «Линейная».
При желании можно установить галочку около позиции «Показывать уравнение на диаграмме». После этого на диаграмме будет отображаться уравнение сглаживающей функции.

Также в нашем случае для сравнения различных вариантов аппроксимации важно установить галочку около пункта «Поместить на диаграмму величину достоверной аппроксимации (R^2)». Данный показатель может варьироваться от 0 до 1. Чем он выше, тем аппроксимация качественнее (достовернее). Считается, что при величине данного показателя 0,85 и выше сглаживание можно считать достоверным, а если показатель ниже, то – нет.

После того, как провели все вышеуказанные настройки. Жмем на кнопку «Закрыть», размещенную в нижней части окна.

Включение линейной аппроксимации в Microsoft Excel

Как видим, на графике линия тренда построена. При линейной аппроксимации она обозначается черной прямой полосой. Указанный вид сглаживания можно применять в наиболее простых случаях, когда данные изменяются довольно быстро и зависимость значения функции от аргумента очевидна.

Линия тренда построена с помощью линейной аппроксимации в Microsoft Excel

Сглаживание, которое используется в данном случае, описывается следующей формулой:

y=ax+b

В конкретно нашем случае формула принимает такой вид:

y=-0,1156x+72,255

Величина достоверности аппроксимации у нас равна 0,9418, что является довольно приемлемым итогом, характеризующим сглаживание, как достоверное.

Способ 2: экспоненциальная аппроксимация

Теперь давайте рассмотрим экспоненциальный тип аппроксимации в Эксель.

  1. Для того, чтобы изменить тип линии тренда, выделяем её кликом правой кнопки мыши и в раскрывшемся меню выбираем пункт «Формат линии тренда…».

Переход в формат лини тренда в Microsoft Excel

После этого запускается уже знакомое нам окно формата. В блоке выбора типа аппроксимации устанавливаем переключатель в положение «Экспоненциальная». Остальные настройки оставим такими же, как и в первом случае. Щелкаем по кнопке «Закрыть».

Построение экспоненциальной линии тренда в Microsoft Excel

После этого линия тренда будет построена на графике. Как видим, при использовании данного метода она имеет несколько изогнутую форму. При этом уровень достоверности равен 0,9592, что выше, чем при использовании линейной аппроксимации. Экспоненциальный метод лучше всего использовать в том случае, когда сначала значения быстро изменяются, а потом принимают сбалансированную форму.

Экспоненциальная линия тренда построена в Microsoft Excel

Общий вид функции сглаживания при этом такой:

y=be^x

где e – это основание натурального логарифма.

В конкретно нашем случае формула приняла следующую форму:

y=6282,7*e^(-0,012*x)

Способ 3: логарифмическое сглаживание

Теперь настала очередь рассмотреть метод логарифмической аппроксимации.

  1. Тем же способом, что и в предыдущий раз через контекстное меню запускаем окно формата линии тренда. Устанавливаем переключатель в позицию «Логарифмическая» и жмем на кнопку «Закрыть».

Включение логарифмической аппроксимации в Microsoft Excel

Происходит процедура построения линии тренда с логарифмической аппроксимацией. Как и в предыдущем случае, такой вариант лучше использовать тогда, когда изначально данные быстро изменяются, а потом принимают сбалансированный вид. Как видим, уровень достоверности равен 0,946. Это выше, чем при использовании линейного метода, но ниже, чем качество линии тренда при экспоненциальном сглаживании.

Логарифмическая линия тренда построена в Microsoft Excel

В общем виде формула сглаживания выглядит так:

y=a*ln(x)+b

где ln – это величина натурального логарифма. Отсюда и наименование метода.

В нашем случае формула принимает следующий вид:

y=-62,81ln(x)+404,96

Способ 4: полиномиальное сглаживание

Настал черед рассмотреть метод полиномиального сглаживания.

  1. Переходим в окно формата линии тренда, как уже делали не раз. В блоке «Построение линии тренда» устанавливаем переключатель в позицию «Полиномиальная». Справа от данного пункта расположено поле «Степень». При выборе значения «Полиномиальная» оно становится активным. Здесь можно указать любое степенное значение от 2 (установлено по умолчанию) до 6. Данный показатель определяет число максимумов и минимумов функции. При установке полинома второй степени описывается только один максимум, а при установке полинома шестой степени может быть описано до пяти максимумов. Для начала оставим настройки по умолчанию, то есть, укажем вторую степень. Остальные настройки оставляем такими же, какими мы выставляли их в предыдущих способах. Жмем на кнопку «Закрыть».

Включение полиномиальной аппроксимации в Microsoft Excel

Линия тренда с использованием данного метода построена. Как видим, она ещё более изогнута, чем при использовании экспоненциальной аппроксимации. Уровень достоверности выше, чем при любом из использованных ранее способов, и составляет 0,9724.

Полиномиальная линия тренда в Microsoft Excel

Данный метод наиболее успешно можно применять в том случае, если данные носят постоянно изменчивый характер. Функция, описывающая данный вид сглаживания, выглядит таким образом:

y=a1+a1*x+a2*x^2+…+an*x^n

В нашем случае формула приняла такой вид:

y=0,0015*x^2-1,7202*x+507,01

Теперь давайте изменим степень полиномов, чтобы увидеть, будет ли отличаться результат. Возвращаемся в окно формата. Тип аппроксимации оставляем полиномиальным, но напротив него в окне степени устанавливаем максимально возможное значение – 6.

Включение полиномиальной аппроксимации в шестой степени в Microsoft Excel

Как видим, после этого наша линия тренда приняла форму ярко выраженной кривой, у которой число максимумов равно шести. Уровень достоверности повысился ещё больше, составив 0,9844.

Полиномиальная линия тренда в шестой степени в Microsoft Excel

Формула, которая описывает данный тип сглаживания, приняла следующий вид:

y=8E-08x^6-0,0003x^5+0,3725x^4-269,33x^3+109525x^2-2E+07x+2E+09

Способ 5: степенное сглаживание

В завершении рассмотрим метод степенной аппроксимации в Excel.

  1. Перемещаемся в окно «Формат линии тренда». Устанавливаем переключатель вида сглаживания в позицию «Степенная». Показ уравнения и уровня достоверности, как всегда, оставляем включенными. Жмем на кнопку «Закрыть».

Полиномиальная линия тренда в шестой степени в Microsoft Excel

Программа формирует линию тренда. Как видим, в нашем случае она представляет собой линию с небольшим изгибом. Уровень достоверности равен 0,9618, что является довольно высоким показателем. Из всех вышеописанных способов уровень достоверности был выше только при использовании полиномиального метода.

Степенная линия тренда построена в Microsoft Excel

Данный способ эффективно используется в случаях интенсивного изменения данных функции. Важно учесть, что этот вариант применим только при условии, что функция и аргумент не принимают отрицательных или нулевых значений.

Общая формула, описывающая данный метод имеет такой вид:

y=bx^n

В конкретно нашем случае она выглядит так:

y = 6E+18x^(-6,512)

Как видим, при использовании конкретных данных, которые мы применяли для примера, наибольший уровень достоверности показал метод полиномиальной аппроксимации с полиномом в шестой степени (0,9844), наименьший уровень достоверности у линейного метода (0,9418). Но это совсем не значит, что такая же тенденция будет при использовании других примеров. Нет, уровень эффективности у приведенных выше методов может значительно отличаться, в зависимости от конкретного вида функции, для которой будет строиться линия тренда. Поэтому, если для этой функции выбранный метод наиболее эффективен, то это совсем не означает, что он также будет оптимальным и в другой ситуации.

Если вы пока не можете сразу определить, основываясь на вышеприведенных рекомендациях, какой вид аппроксимации подойдет конкретно в вашем случае, то есть смысл попробовать все методы. После построения линии тренда и просмотра её уровня достоверности можно будет выбрать оптимальный вариант.

ЗакрытьМы рады, что смогли помочь Вам в решении проблемы.
ЗакрытьОпишите, что у вас не получилось.

Наши специалисты постараются ответить максимально быстро.

Помогла ли вам эта статья?

ДА НЕТ

Настройка параметров расчёта

Для настройки специфических параметров расчёта используйте вкладки на панели свойств:

  • Параметры. Позволяет изменить базовые параметры расчёта: модели сезонности и роста;

  • Параметры автоподбора. Позволяет настроить параметры автоматического подбора значений коэффициентов, используемых при расчёте метода.

См. также:

Методы расчёта | Прогноз | Метод экспоненциального сглаживания

Инструменты сглаживания программы MS EXCEL

В программе EXCEL имеется всего два инструмента анализа, используемые для сглаживания временного ряда. Элементы диалогового окна «Скользящее среднее» представлены на рис. 3.1.

8546c3f1342948b8c1d4e770854c05f5.jpg

Рис. 3.1. Инструмент анализа «Скользящее среднее»

Необходимо ввести следующие аргументы:

  • «Входной интервал» — анализируемый ряд (должен состоять из одного столбца или одной строки).
  • «Интервал» — «размер окна» (по умолчанию используется 3).
  • «Метки в первой строке» — необходимо установить флажок, если первая строка (или столбец) входного интервала содержит заголовок.
  • «Выходной диапазон» — должен находиться на одном листе с исходными данными. По этой причине параметры «Новый лист» и «Новая книга» недоступны. Необходимо ввести ссылку на левую верхнюю ячейку выходного диапазона.
  • «Стандартные погрешности» — если установлен флажок, то выходной диапазон состоит из двух столбцов, и значения стандартных погрешностей содержатся в правом столбце.
  • «Вывод графика» — если установлен флажок, то создаётся встроенная диаграмма на листе, содержащем выходной диапазон.

Элементы диалогового окна «Экспоненциальное сглаживание» представлены на рис. 3.2.

Читайте также: Как сделать схему для вязания в excel?

6cc24bf078dd69fc67e1161a3049ed1f.jpg

Здесь имеется ранее не представленный аргумент «Фактор затухания», представляющий собой константу экспоненциального сглаживания — корректировочный фактор, минимизирующий нестабильность данных генеральной совокупности. По умолчанию значение аргумента «Фактор затухания» равно 0,3. Наиболее подходящим интервалом значений этого параметра сглаживания считается промежуток от 0,2 до 0,3.

Обнаружение и анализ тренда

Обычно анализ временного ряда начинается с выявления тренда.Выделение тренда очень важно, т.к. его исключение позволяет перейти к дальнейшей идентификации других компонент ряда.

Окончательная проверка реализаций на наличие трендов может быть выполнена различными способами.

При этом желательно знание закона распределения, например, нормального, или при­менение непараметрических критериев, при использовании кото­рых не требуется знание выборочных распределений оценок.

Показатели динамики

Наличие или отсутствие тренда обычно хорошо видно по графику временного ряда (см., например, рис. 8.1) или по специальным аналитическим «показателям динамики ВР».

Показатели динамики разделяются на следующие важнейшие виды:

«абсолютный прирост» равен разности Δ двух сравниваемых уров­ней и характеризует изменение показателя за определенный про­межуток текущей переменной.

  1. «темп роста» Т (всегда положителен) характеризует отношение двух сравниваемых уровней ряда, как правило, выраженное в процентах.
  2. «темп прироста» K.
  3. Причем каждый из указанных видов показателей может быть трех типов:
  4. «цепной» — если сравнение осуществляется при переменной базе, и каж­дый последующий уровень сравнивается с предыдущим
  5. «базисный» — если сравнение осуществляется с одним и тем же уровнем, принятым за базу сравнения;
  6. «средний».

Например, «средний абсолютный прирост» — это обобщающая характеристика скорости изменения исследуемого показателя во времени (ско­ростью будем называть прирост в единицу времени). Для его оп­ределения за весь период наблюдения используется формула про­стой средней арифметической «цепного абсолютного прироста».

«Средний темп роста» — обобщающая характеристика, отражающая интенсивность изменения уровней ряда. Он показывает, сколько в среднем процентов последующий уровень со­ставляет от предыдущего на всем периоде наблюдения. Этот показатель рассчитывается по формуле средней геометрической n последовательных цеп­ных темпов роста.

Формулы расчёта всех видов и типов показателей динамики представлены в табл. 8.1.

Таблица 8.1. Основные показатели динамики ВР

Сглаживание графика в excel. Сглаживание линий в графиках и точечных диаграммах

Данные, получаемые в процессе экспериментов, как правило, содержат случайные отклонения (погрешности), поэтому построенные по ним графики не являются плавными линиями, они чаще всего имеют вид зубчатых линий, т.е. линий, отличающихся от плавных наличием “выбросов” и “впадин”.

Наличие таких выбросов и впадин иногда затрудняет не только визуальное восприятие закономерности изменения данной величины и, соответственно, анализ полученных графиков, но и выбор гипотезы возможного математического описания графика.

Поэтому экспериментальные данные в большинстве случаев необходимо сглаживать, используя методы усреднения ординат на основе интерполяционных формул.

Идея, положенная в основу всех методик математического сглаживания графиков, аналогична идее выравнивания пересеченной местности с помощью бульдозера – срезание выступов почвы и перемещение полученного материала в ближайшие ямы.

Все методики сглаживания графиков
основаны на использовании нечетного количества ординат (3, 5, 7, …) и работоспособны только в том случае, когда шаг точек по оси абсцисс одинаков.
Самым простым методом сглаживания является метод сглаживания по трем ординатам.

Сглаживание по методу трех ординат выполняется следующим образом. Пусть в результате экспериментов получена зависимость у = f(x),
данные сведены в соответствующую таблицу и по ним построен график. В таблице выбираются первые три соседние ординаты, начиная с крайней левой, и они условно
обозначаются:

Левая в рассматриваемой тройке ординат (т.е. в данном случае самая первая ордината);

  • Средняя из выделенных ординат;
  • Правая в данной тройке ординат.

Сглаженное значение крайней левой ординаты определяется по следующей формуле:

183e494ac3d1faf84c66d93a1b3b0e22.png

Сглаженное значение второй (средней) ординаты определяется по формуле:

4ce88f82f002e9ae8a7a372a581beb31.png

Далее сдвигаются вправо на одну точку и выделяют вторую тройку соседних ординат, в которой та ордината, которая была средней в первой тройке, станет крайней левой в новой тройке ординат. В этой новой тройке ординат определяют сглаженное значение только средней ординаты
по формуле (2).

Затем сдвигаются на один шаг вправо и получают следующую тройку соседних ординат, в которой средняя ордината предыдущей тройки станет крайней левой, определяют сглаженное значение средней ординаты в полученной новой тройке ординат
и так поступают до тех пор, пока в последней тройке соседних ординат в качестве третьей ординаты не окажется крайняя правая ордината.

В последней тройке ординат определяют сглаженное значение средней ординаты
по формуле (2), а затем сглаженное значение крайней правой ординаты по формуле:

Если в исходных экспериментальных данных имеются точки с половинным шагом по оси абсцисс по сравнению с шагом остальных точек, то усредненное (сглаженное) значение ординаты каждой такой точки определяется точно так же, как и описано выше, т.е.

выделяется тройка соседних ординат, в которой условной средней ординатой является ордината точки с половинным шагом по оси абсцисс, а условной левой ординатой и условной правой ординатами считаются ординаты, находящиеся непосредственно слева и справа от нее.

b6c50e0edab8515d02efc9badd1b4613.png

В случае, если исходная зависимость имеет большой разброс точек (большие “выбросы” и “впадины“), то однократного сглаживания может быть недостаточно, и будет необходимо провести еще одно или несколько повторных сглаживаний. В качестве исходных значений ординат при каждом повторном сглаживании следует использовать результаты предыдущего сглаживания.

Методы сглаживания по пяти, семи и большему количеству ординат позволяют получить сглаженный график более быстро, но при этом более сильно искажают вид исходного графика. Из всех известных методов сглаживания метод сглаживания по трем ординатам является самым «нежным» и щадящим.

Следует иметь ввиду, что при многократном повторении сглаживания исходного графика по любому количеству ординат любой исходный график превратится в конечном итоге в прямую линию

, поэтому ко многократному повторению сглаживания следует относиться осторожно.

Если исходный график похож на некую пилообразную или кусочно-линейную фигуру, состоящую из более или менее прямолинейных отрезков, то представляется целесообразным сглаживать по отдельности эти отрезки. При этом крайние сглаженные ординаты соседних отрезков, как правило, совпадать не будут. За сглаженное значение таких ординат следует принять их среднее арифметическое.

Рисунок 20. — Чтобы изменить форму конкретного маркера данных или всех маркеров выделенного ряда, выберите один из вариантов на вкладке Фигура.

Excel не допускает изменения формы маркеров данных в объемных диаграм­мах, содержащих ось рядов.

Варианты 2 и 3, а также 5 и 6 почти аналогичны друг другу. Отличие заключается в том, что при выборе вариантов 3 и 6 маркеры, представляющие меньшие значения в ряду данных, отображаются в виде усеченной фигуры. Например, при выборе варианта 3 короткие маркеры ряда данных появятся в виде усеченных пирамид.

Сглаживание линий в графиках и точечных диаграммах

Excel может применять сглаживание к рядам данных на графиках и точечных диаграммах. Чтобы воспользоваться этой возможностью, выделите ряд дан­ных, который хотите сгладить, и выберите первую команду в меню Формат. Затем на вкладке Вид (Patterns) открывшегося окна диалога Формат ряда данных установите флажок Сглаженная линия (Smoothed Line).

Изменение линий и маркеров в графиках, точечных и лепестковых диаграммах

Чтобы изменить тип, толщину и цвет линии на графике, лепестковой или точечной диаграмме, выделите ряд данных и затем выберите первую команду в меню Формат. После открытия окна диалога Формат ряда данных перейдите на вкладку Вид (Patterns), представленную на рисунке 21. На этой же вкладке можно изменить вид, цвет и размер маркеров или вовсе удалить их из ряда данных.

9e109a3563844f6282c4f299c45dc9f5.jpg

Для форматирования линий и маркеров установите нужные значения параметров на вкладке Вид.

Отображение в графиках коридоров колебания и полос повышения и понижения

Коридор колебания — это линия, соединяющая минимальное и максимальное значения и наглядно показывающая диапазон, в пределах которого изменяют­ся значения в данной категории. На рисунке 8 показана диаграмма, иллюст­рирующая применение коридора колебания. Коридор колебания может быть показан только на плоских графиках.

Полоса повышения и понижения — это прямоугольник, нарисованный между точками данных первого и последнего ряда.

Excel заполняет прямоугольник одним цветом или узором, если первый ряд расположен выше последнего, и контрастным цветом или узором в противном случае.

Полосы повышения и понижения обычно используются в биржевых диаграммах для отслеживания изменения цен открытия и закрытия, но вы можете отобразить их и на плоских графиках, содержащих, по крайней мере, два ряда данных.

Чтобы отобразить в диаграмме коридоры колебания или полосы повышения и понижения, выделите любой ряд данных и выберите первую команду в меню Формат. Затем на вкладке Параметры (Options) открывшегося окна диало­га Формат ряда данных (Format Data Series) установите флажок Минимум-максимум (High-Low Lines) или Открытие-закрытие (Up-Down Bars).

При использовании в диаграмме полос повышения и понижения Excel позво­ляет изменять ширину зазора. Этот параметр обычно доступен только для гистограмм и линейчатых диаграмм, но Excel рассматривает график с полоса­ми повышения и понижения как вид гистограммы. При увеличении ширины зазора полосы повышения и понижения становятся уже, а при уменьшении — шире.

Вы можете изменить внешний вид коридоров колебания или полос повышения и понижения. Для этого выделите один (одну) из них и затем выберите первую команду в меню Формат.

Excel откроет окно диалога, позволяющее изменять цвет, толщину и тип линии коридоров колебания или цвет, узор и рамку полос повышения и понижения.

Для заливки полос повышения и понижения можно даже использовать текстуру или рисунок.

Отображение линий проекций в графиках и диаграммах с областями

Линия проекции — это прямая, которая проходит от точки данных до оси категорий.

Линии проекций особенно полезны в диаграммах с областями, содержащих несколько рядов данных, но их можно добавить в любую диа­грамму с областями, в плоский или объемный график.

Для этого выделите ряд данных и выберите первую команду в меню Формат. Затем на вкладке Параметры открывшегося окна диалога Формат ряда данных установите флажок Линии проекции (Drop Lines).

Чтобы отформатировать линии проекции для ряда данных, выделите одну из них и затем выберите первую команду в меню Формат.

Отделение секторов круга и кольца

Ваша мышь может разорвать круг или кольцо на отдельные секторы. Просто перетащите любой сектор по направлению от центра диаграммы. (Но учтите, что в кольцевой диаграмме можно отделять секторы только внешнего кольца.) Чтобы вернуть кругу или кольцу первоначальный вид, просто перетащите сектор назад в центр диаграммы.

Чтобы отделить только конкретный сектор круга или кольца в плоской или объемной диаграмме, щелкните на этом секторе два раза. Первый щелчок выделит ряд данных, а второй — конкретный сектор. После выделения сек­тора перетащите его в сторону от центра.

Форматирование вторичной круговой диаграммы и вторичной гистограммы

Вторичная круговая диаграмма и вторичная гистограмма — это круговая диа­грамма, в которой несколько точек данных отображаются на вспомогательной круговой диаграмме или гистограмме. Вспомогательная диаграмма предостав­ляет более подробную информацию о некоторой части основной диаграммы.

Чтобы преобразовать обычную круговую диаграмму во вторичную круговую диаграмму или гистограмму, выделите любую ее часть и затем в меню Диа­грамма выберите команду Тип диаграммы. В правой части галереи видов круго­вой диаграммы вы найдете вторичную круговую диаграмму и вторичную гистограмму.

По умолчанию при построении вспомогательной диаграммы Excel использует два последних значения ряда данных, но допустимы и другие способы разде­ления значений между основной и вспомогательной диаграммами.

Для этого выделите ряд данных во вторичной круговой диаграмме или гистограмме и выберите первую команду в меню Формат.

После открытия окна диалога Фор­мат ряда данных перейдите на вкладку Параметры, представленную на рисунке 22.

Ряд данных можно разделить по положению (последние n точек данных отойдут к вспомогательной диаграмме), по значению (к вспомогательной диа­грамме отойдут все точки данных, значение которых меньше n), по доле (к вспомогательной диаграмме отойдут все секторы, значение которых составляет меньше n процентов от общей суммы). Кроме того, вы можете выбрать пункт Дополнительно (Custom) в списке Разделение рядов (Split Series By) и затем просто перетащить часть секторов из основной диаграммы во вспомогательную.

4e10c2d10bb3a9e2ec39d5d863dc7702.jpg

Изменение параметров вторичной круговой диаграммы и вторичной гистограммы.

Параметры настройки для вторичной круговой диаграммы и вторичной гисто­граммы одинаковы, и единственным их отличием является форма вспомога­тельной диаграммы.

После изменения параметров разделения Excel перерису­ет основную диаграмму и покажет на ней единый сектор, представляющий все точки данных, отображаемые на вспомогательной диаграмме.

По умолчанию Excel рисует линии от этого общего сектора ко всей вспомогательной диаграм­ме. Вы можете удалить эти линии, сняв флажок Соединить значения ряда (Series Lines).

У меня есть некоторые зазубренные контурные сюжеты, которые мне нужно сгладить. Мне нужно сгладить их, не теряя ни одной из линий контура. Я упомянул эти , но они не совсем предлагают решение моей проблемы. Без какого-либо фильтра мои сюжеты выглядят так:

Вы можете видеть, что внешние контуры очень неровные, и поэтому качество презентации не является. Если я запустил данные через гауссовский фильтр порядка 0 и сигма 2 (т.е. scipy.ndimage.gaussian_filter(z, 2)), он сглаживает графики, но я потеряет внутренние контуры:

0850cd80532016787baf9f00872d6f55.png

Каков наилучший способ сглаживания графика без потери внутренних контуров? Характер данных, с которыми я работаю, заключается в том, что он всегда имеет самые высокие значения вблизи центра. Фильтрация расширяет информацию и устраняет внутренние контуры. Это наиболее важные контуры: контуры представляют собой риск гибели людей, поэтому, как правило, чем выше значение, тем важнее оно.

Я рассмотрел два метода сглаживания контурных линий.

  • Получите каждую координату контурной линии через contour_object.collections.get_paths().vertices и сгладьте/перерисуйте каждый. Это кажется возможным, но неэлегантным, и я не уверен, с чего начать.
  • Примените гауссовский фильтр только к данным, превышающим определенное значение: например, 5 * 10 -6 . Это легко сделать (процитировать массив данных и взять из исходного набора, если значение больше, чем обрезание, и отфильтрованный набор, если это не так), но кажется довольно произвольным и трудно оправдавшимся.

Я хотел бы сделать что-то вроде первого варианта, но это похоже на хак. Каков наилучший способ сгладить эти контурные графики?

Сглаживание данных → потеря данных.

Моя первая реакция: почему вы хотите отображать сглаженные данные? Я редко когда-либо видел презентации данных, в которых сглаживание данных было действительно полезно для понимания последствий данных. Фактически, это то, что Туфте часто критиковали (это не повод, чтобы избежать этого, конечно, но, возможно, для того, чтобы попросить себя придумать больше оправдания, чем обычно).

  1. Если сюжет должен выглядеть красиво для некоторых причин, не связанных с данными, это полностью нормально, но если вы пытаетесь сделать его более приятным для глаз, когда задача состоит в том, чтобы понять что-то о природе контуров, вам гораздо лучше просто представить исходные данные, как есть.
  2. Если у вас есть разные контуры, хранящиеся в виде отдельных наборов данных (например, если вы просто украли разные наборы данных сюжетной линии, которые использует контурный плоттер), вы можете применить сглаживание только к тем контурам, где потеря данных от сглаживания и оставлять меньшие внутренние контуры несжимаемыми и зубчатыми.
  3. Или вы можете возиться с параметрами сглаживания, чтобы ваше сглаживающее ядро ​​было достаточно узким, чтобы не полностью убить крошечные внутренние кольца из вашего набора данных.
  4. В принципе, нет никакого способа «сгладить» данные без «потери» данных в некотором смысле, и любой способ сделать это, который не применяется равномерно ко всему набору данных, будет подозрительным.

Экспоненциальное сглаживание в Excel

  • В Excel можно подключить пакет анализа для сглаживания самих данных.
  • Такое сглаживание это метод применяемый для сглаживания временных рядом — статья википедии
  • Зайдите в меню — Параметры Excel — Надстройки — Пакет анализа (в правом окне) и в самом низу нажимайте Перейти

905cd797d7e07d5ba68e70a090817d54.png

В открывшемся окне находим Экспоненциальное сглаживание.

Метод средней взвешенной

Метод средней взвешенной основан на использовании среднего арифметического, взвешенного по временным периодам, с наибольшим весом у самых близких к прогнозируемому и с учетом сезонности. После этого находится сумма всех значений прогнозируемого показателя за периоды и делится на сумму весов. Преимуществом данного метода является его простота и скорость расчетов, поэтому он прекрасно подходит для ситуаций, где необходимо составить прогноз движения денежных средств в очень сжатые сроки. Однако для принятия долгосрочных стратегических решений этот метод не является наиболее оптимальным, поскольку процент отклонения его прогнозного значения от фактического наибольший, кроме того он не позволяет оценить и другие факторы, помимо временного и фактора сезонности.

Метод скользящей средней

Это еще один метод прогнозирования денежных потоков «на скорую руку». Скользящая средняя — это средняя стоимость какого-нибудь показателя за определенный период (например, последние 3 месяца), которые с течением времени сдвигаются вперед (таким образом, происходит сглаживание сезонности).

Метод экспертных оценок

Экспертный метод позволяет получить самую субъективную оценку будущего денежного потока компании, поскольку основан на субъективных оценках экспертов (в роли которых выступают обычно сотрудники соответствующих подразделений компании). Преимуществом данного метода является то, что он может быть применен в условиях, когда исторических данных или технических средств для построения объективного прогноза не хватает, или в условиях полной неопределенности. В таком случае, например, сотрудники, отвечающие за собираемость дебиторской задолженности, составляют прогноз поступлений денежных средств от операционной деятельности с учетом качества дебиторской задолженности, сроков ее погашения и классифицируют ожидаемые поступления по курируемым клиентам и степени вероятности (базовый прогноз, оптимистичный и пессимистичный).

Как рассчитать прогноз по методу экспоненциального сглаживания в Excel?

Формула расчета прогноза проста:

Ŷt+1=k*Yt +(1-k)* Ŷt

Где:

  • Ŷt+1 – прогноз на следующий период t+1;
  • Yt – данные для прогноза за текущий период t (например, продажи по месяцам);
  • k – коэффициент сглаживания ряда , k задается вами вручную и находится в диапазоне от 0 до 1, 0 < k < 1
  • Ŷt – значение прогноза на текущий период t. Причем в первый период (месяц, день…) Ŷ1=Y1, т.е. Ŷt в первый период равны продажам в этот период.

Прогноз по методу экспоненциального сглаживания = коэффициент сглаживания * последнее фактическое значение продаж + (1- коэффициент сглаживания)*предыдущий прогноз по методу экспоненциального сглаживания.

Exponencialnay-model.jpg

Важно отметить, что данная модель предполагает регулярный пересчет прогноза по окончании последнего периода и появлении новых данных для прогноза за последний период.

Возможно, у вас есть тренд

Чтобы проверить это предположение достаточно подогнать линейную регрессию под данные спроса и выполнить тест на соответствие критерию Стьюдента на подъеме этой линии тренда (как в главе 6). Если уклон линии ненулевой и статистически значимый (в проверке по критерию Стьюдента величина р менее 0,05), у данных есть тренд (рис. 6).

Ris.-6.-Test-Styudenta-pokazyvaet-nalichie-trenda.jpg

Рис. 6. Тест Стьюдента показывает наличие тренда

Мы воспользовались функцией ЛИНЕЙН, которая возвращает 10 описательных статистик (если вы ранее не пользовались этой функцией, рекомендую Функция массива ЛИНЕЙН) и функцией ИНДЕКС, которая позволяет «вытащить» только три требуемые статистики, а не весь набор. Получилось, что наклон равен 2,54, и он значим, так как тест Стьюдента показал, 0,000000012 существенно меньше 0,05. Итак, тренд есть, и осталось включить его в прогноз.

Выявление закономерностей в данных

Есть способ испытать прогностическую модель на прочность — сравнить погрешности сами с собой, сдвинутыми на шаг (или несколько шагов). Если отклонения случайны, то улучшить модель нельзя. Однако, возможно, в данных о спросе есть сезонный фактор. Концепция погрешности, коррелирующей с собственной версией за другой период, называется автокорреляцией (подробнее об автокорреляции см. Простая линейная регрессия). Чтобы рассчитать автокорреляцию, начните с данных об ошибке прогноза за каждый период (столбец F на рис. 7 переносим в столбец В на рис. 10). Далее определите среднюю ошибку прогноза (рис. 10, ячейка В39; формула в ячейке: =СРЗНАЧ(B3:B38)). В столбце С рассчитайте отклонение ошибки прогноза от среднего; формула в ячейке С3: =B3-B$39. Далее последовательно сдвигайте столбец С на столбец вправо и строку вниз. Формулы в ячейках D39: =СУММПРОИЗВ($C3:$C38;D3:D38), D41: =D39/$C39, D42: =2/КОРЕНЬ(36), D43: =-2/КОРЕНЬ(36).

Ris.-10.-Raschet-avtokorrelyacii.jpg

Рис. 10. Расчет автокорреляции

Что может значить для одного из столбцов D:O «синхронное движение» со столбцом С. Например, если столбцы С и D синхронны, то число, отрицательное в одном из них, должно быть отрицательным и в другом, положительное в одном, положительное – в другом. Это означает, что сумма произведений двух столбцов будет значительной (отличия накапливаются). Или, что тоже самое, чем ближе значение в диапазоне D41:О41 к нулю, тем ниже корреляция столбца (соответственно от D до О) со столбцом С (рис. 11).

Ris.-11.-Diagramma-avtokorrelyacii.jpg

Рис. 11. Диаграмма автокорреляции

Одна автокорреляция выше критического значения. Погрешность, сдвинутая на год, коррелирует сама с собой. Это означает 12-месячный сезонный цикл. И это неудивительно. Если вы посмотрите на график спроса (рис. 2), то окажется, что есть пики спроса на каждое Рождество и провалы в апреле-мае. Рассмотрим технику прогнозирования, учитывающую сезонность.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...